化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3527-3536.DOI: 10.11949/0438-1157.20190126
收稿日期:
2019-02-18
修回日期:
2019-05-15
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
黄发荣
作者简介:
王海军(1993—),男,硕士研究生,基金资助:
Haijun WANG(),Luyu WANG,Mingming MA,Liqiang WAN,Farong HUANG()
Received:
2019-02-18
Revised:
2019-05-15
Online:
2019-09-05
Published:
2019-09-05
Contact:
Farong HUANG
摘要:
合成了三种含酯基和三种含醚键的炔单体,通过核磁共振氢谱(1H NMR)、红外光谱(FT-IR)、质谱(MS)、液相色谱(LC)对其结构进行了表征。用这六种炔单体与叠氮单体反应制备了一系列新型聚三唑酯树脂(PTAE)和聚三唑醚树脂(PTAO)。利用差示扫描量热分析(DSC)、FT-IR、动态力学热分析(DMA)、力学试验机和热失重分析(TGA)表征了树脂的固化行为、固化树脂的力学性能、耐热性和热稳定性。结果表明PTAE和PTAO树脂易溶于有机溶剂,可低温(60℃)固化,固化树脂的弯曲强度超过了100 MPa,可达158 MPa,玻璃化转变温度(T g)超过180℃,高者达251℃,热分解温度可达360℃。
中图分类号:
王海军, 王露雨, 马明明, 万里强, 黄发荣. 新型聚三唑酯和聚三唑醚树脂的合成及性能[J]. 化工学报, 2019, 70(9): 3527-3536.
Haijun WANG, Luyu WANG, Mingming MA, Liqiang WAN, Farong HUANG. Synthesis and properties of novel poly(triazole ester) and poly(triazole ether) resins[J]. CIESC Journal, 2019, 70(9): 3527-3536.
Resins | Alkyne monomers | Azide monomers |
---|---|---|
PTAE-32 | DPB | TAMTMB |
PTAE-23 | TRPB | BAMBP |
PTAE-24 | TEPB | BAMBP |
PTAO-32 | BPOB | TAMTMB |
PTAO-23 | TPOB | BAMBP |
PTAO-24 | TPOBE | BAMBP |
表1 不同树脂的原料单体
Table 1 Monomers for various resins
Resins | Alkyne monomers | Azide monomers |
---|---|---|
PTAE-32 | DPB | TAMTMB |
PTAE-23 | TRPB | BAMBP |
PTAE-24 | TEPB | BAMBP |
PTAO-32 | BPOB | TAMTMB |
PTAO-23 | TPOB | BAMBP |
PTAO-24 | TPOBE | BAMBP |
Solvent | Solubility | |||||
---|---|---|---|---|---|---|
PTAE-32 | PTAE-23 | PTAE-24 | PTAO-32 | PTAO-23 | PTAO-24 | |
acetone | + | + | + | + | + | + |
toluene | - | + | - | - | - | - |
tetrahydrofuran | + | + | + | + | + | + |
methanol | - | - | - | - | - | - |
acetonitrile | + | + | + | + | + | - |
dichloromethane | + | + | + | + | + | + |
1,2-dichloroethane | + | + | + | + | + | + |
diethyl ether | - | - | - | - | - | - |
ethyl acetate | + | + | + | + | + | - |
DMF | + | + | + | + | + | + |
DMSO | + | + | + | + | + | + |
petroleum ether | - | - | - | - | - | - |
表2 PTAE和PTAO树脂的溶解性
Table 2 Solubility of PTAE and PTAO resins
Solvent | Solubility | |||||
---|---|---|---|---|---|---|
PTAE-32 | PTAE-23 | PTAE-24 | PTAO-32 | PTAO-23 | PTAO-24 | |
acetone | + | + | + | + | + | + |
toluene | - | + | - | - | - | - |
tetrahydrofuran | + | + | + | + | + | + |
methanol | - | - | - | - | - | - |
acetonitrile | + | + | + | + | + | - |
dichloromethane | + | + | + | + | + | + |
1,2-dichloroethane | + | + | + | + | + | + |
diethyl ether | - | - | - | - | - | - |
ethyl acetate | + | + | + | + | + | - |
DMF | + | + | + | + | + | + |
DMSO | + | + | + | + | + | + |
petroleum ether | - | - | - | - | - | - |
Resins | T i/℃ | T p/℃ | T f/℃ |
---|---|---|---|
PTAE-32 | 97.7 | 148.2 | 185.3 |
PTAE-23 | 91.1 | 132.1 | 174.4 |
PTAE-24 | 91.6 | 132.4 | 165.2 |
PTAO-32 | 92.7 | 135.0 | 174.0 |
PTAO-23 | 91.9 | 133.3 | 177.6 |
PTAO-24 | 90.5 | 133.2 | 184.1 |
表3 PTAE和PTAO树脂的DSC数据
Table 3 DSC results of PTAE and PTAO resins
Resins | T i/℃ | T p/℃ | T f/℃ |
---|---|---|---|
PTAE-32 | 97.7 | 148.2 | 185.3 |
PTAE-23 | 91.1 | 132.1 | 174.4 |
PTAE-24 | 91.6 | 132.4 | 165.2 |
PTAO-32 | 92.7 | 135.0 | 174.0 |
PTAO-23 | 91.9 | 133.3 | 177.6 |
PTAO-24 | 90.5 | 133.2 | 184.1 |
Resins in different curing stages | Degree of cure, α/% | |||||
---|---|---|---|---|---|---|
PTAE-32 | PTAE-23 | PTAE-24 | PTAO-32 | PTAO-23 | PTAO-24 | |
raw resins | 0 | 0 | 0 | 0 | 0 | 0 |
60℃/6 h | 83.6 | 76.5 | 81.2 | 79.7 | 84.6 | 77.4 |
60℃/6 h+120℃/2 h | 97.8 | 94.8 | 93.5 | 95.7 | 97.1 | 96.4 |
60℃/6 h+120℃/2 h+150℃/2 h | 98.5 | 97.6 | 97.8 | 98.7 | 98.2 | 97.9 |
60℃/6 h+120℃/2 h+150℃/2 h+180℃/2 h | | | | | | |
表4 PTAE和PTAO树脂的固化跟踪
Table 4 Curing trace of PTAE and PTAO resins
Resins in different curing stages | Degree of cure, α/% | |||||
---|---|---|---|---|---|---|
PTAE-32 | PTAE-23 | PTAE-24 | PTAO-32 | PTAO-23 | PTAO-24 | |
raw resins | 0 | 0 | 0 | 0 | 0 | 0 |
60℃/6 h | 83.6 | 76.5 | 81.2 | 79.7 | 84.6 | 77.4 |
60℃/6 h+120℃/2 h | 97.8 | 94.8 | 93.5 | 95.7 | 97.1 | 96.4 |
60℃/6 h+120℃/2 h+150℃/2 h | 98.5 | 97.6 | 97.8 | 98.7 | 98.2 | 97.9 |
60℃/6 h+120℃/2 h+150℃/2 h+180℃/2 h | | | | | | |
Resins | Flexural strength/MPa | Flexural modulus/GPa |
---|---|---|
PTAE-32-C | 102.1±5.1 | 3.1±0.4 |
PTAE-23-C | 132.5±5.7 | 2.9±0.3 |
PTAE-24-C | 107.9±3.2 | 2.6±0.3 |
PTAO-32-C | 136.1±4.4 | 3.2±0.2 |
PTAO-23-C | 158.2±3.5 | 3.0±0.3 |
PTAO-24-C | 122.3±4.1 | 2.7±0.3 |
表5 固化PTAE-C 和PTAO-C树脂的弯曲性能
Table 5 Flexural properties of PTAE-C and PTAO-C resins
Resins | Flexural strength/MPa | Flexural modulus/GPa |
---|---|---|
PTAE-32-C | 102.1±5.1 | 3.1±0.4 |
PTAE-23-C | 132.5±5.7 | 2.9±0.3 |
PTAE-24-C | 107.9±3.2 | 2.6±0.3 |
PTAO-32-C | 136.1±4.4 | 3.2±0.2 |
PTAO-23-C | 158.2±3.5 | 3.0±0.3 |
PTAO-24-C | 122.3±4.1 | 2.7±0.3 |
Resins | T g/℃ |
---|---|
PTAE-32-C | 183(214) |
PTAE-23-C | 185(207) |
PTAE-24-C | 189(213) |
PTAO-32-C | 204 |
PTAO-23-C | 208 |
PTAO-24-C | 251 |
表6 PTAE-C和PTAO-C树脂的T g
Table 6 T g of PTAE-C and PTAO-C resins
Resins | T g/℃ |
---|---|
PTAE-32-C | 183(214) |
PTAE-23-C | 185(207) |
PTAE-24-C | 189(213) |
PTAO-32-C | 204 |
PTAO-23-C | 208 |
PTAO-24-C | 251 |
Resins | d c×103/(mol/cm3) |
---|---|
PTAE-32-C | 1.27 |
PTAE-23-C | 0.68 |
PTAE-24-C | 1.36 |
PTAO-32-C | 2.87 |
PTAO-23-C | 4.61 |
PTAO-24-C | 6.92 |
表7 PTAE-C和PTAO-C树脂的交联密度d c
Table 7 Crosslink density of PTAE-C and PTAO-C resins
Resins | d c×103/(mol/cm3) |
---|---|
PTAE-32-C | 1.27 |
PTAE-23-C | 0.68 |
PTAE-24-C | 1.36 |
PTAO-32-C | 2.87 |
PTAO-23-C | 4.61 |
PTAO-24-C | 6.92 |
Resins | T d5/℃ |
---|---|
PTAE-32-C | 317 |
PTAE-23-C | 320 |
PTAE-24-C | 300 |
PTAO-32-C | 341 |
PTAO-23-C | 343 |
PTAO-24-C | 360 |
表8 PTAE-C和PTAO-C树脂的T d5
Table 8 T d5 of PTAE and PTAO resins
Resins | T d5/℃ |
---|---|
PTAE-32-C | 317 |
PTAE-23-C | 320 |
PTAE-24-C | 300 |
PTAO-32-C | 341 |
PTAO-23-C | 343 |
PTAO-24-C | 360 |
1 | Michael A . Ueber die einwirkung von diazobenzolimid auf acetylendicarbonsäuremethylester[J]. Adv. Synth. Catal., 1893, 48(1): 94-95. |
2 | Kolb H C , Finn M G , Sharpless K B . Click chemistry: diverse chemical function from a few good reactions[J]. Cheminform, 2001, 32(35): 2004-2021. |
3 | Rostovtsev V V , Green L G , Fokin V V , et al . A stepwise huisgen cycloaddition process: copper(Ⅰ)-catalyzed regioselective “ligation” of azides and terminal alkynes[J]. Angew. Chem. Int. Ed., 2002, 114(14): 2708-2711. |
4 | Ackermann L , Potukuchi H K , Landsberg D , et al . Copper-catalyzed “click” reaction/direct arylation sequence: modular syntheses of 1,2,3-triazoles[J]. Org. Lett., 2008, 10(14): 3081-3084. |
5 | Um J E , Song S G , Yoo P J , et al . Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry[J]. Appl. Surf. Sci., 2017, 429(6): 278-283. |
6 | Liu H H , Li S X , Zhang M J , et al . Facile synthesis of ABCDE-type H-shaped quintopolymers by combination of ATRP, ROP, and click chemistry and their potential applications as drug carriers[J]. J. Polym. Sci. Part A: Polym. Chem., 2015, 50(22): 4705-4716. |
7 | Lee K S , Park S Y , Moon H C , et al . Thermal stability of ester linkage in the presence of 1,2,3-triazole moiety generated by click reaction[J]. J. Polym. Sci., Part A: Polym. Chem., 2017, 55(3): 427-436. |
8 | Thibault R J , Takizawa K , Lowenheilm P , et al . A versatile new monomer family: functionalized 4-vinyl-1,2,3-triazoles via click chemistry[J]. J. Am. Chem. Soc., 2006, 128(37): 12084-12085. |
9 | Li H , Li L , Wu H , et al . Ferrocene-based poly(aroxycarbonyltriazole)s: synthesis by metal-free click polymerization and use as precursors to magnetic ceramics [J]. Polym. Chem., 2013, 4(22): 5537-5541. |
10 | Tang J , Wan L , Zhou Y , et al . Strong and efficient self-healing adhesives based on dynamic quaternization cross-links[J].J. Mater. Chem.A, 2017, 5(40): 21169-21177. |
11 | Nagao Y , Takasu A . Click polyester: synthesis of polyesters containing triazole units in the main chain by click chemistry and improved thermal property[J]. Macromol. Rapid. Commun., 2009, 30(3): 199-203. |
12 | Katritzky A R , Meher N K , Hanci S , et al . Preparation and characterization of 1,2,3-triazole-cured polymers from endcapped azides and alkynes[J]. J. Polym. Sci., Part A: Polym. Chem., 2010, 46(1): 238-256. |
13 | Gorman I E , Willer R L , Kemp L K , et al . Development of a triazole-cure resin system for composites: evaluation of alkyne curatives[J]. Polymer, 2012, 53(13): 2548-2558. |
14 | Gilday L C , White N G , Beer P D . Triazole- and triazolium-containing porphyrin-cages for optical anion sensing[J]. Dalton Transactions, 2012, 41(23): 7092-7097. |
15 | Baranek A , Song H B , Mcbride M , et al . Thermomechanical formation-structure-property relationships in photopolymerized copper-catalyzed azide-alkyne (CuAAC) networks[J]. Macromolecules, 2016, 49(4): 1191-1200. |
16 | Li Y , Zhou H , Yanpeng E , et al . Synthesis and characterization of a new series of rigid polytriazole resins[J]. Designed Monomers and Polymers, 2013, 16(6): 556-563. |
17 | Tian J , Wan L , Huang J , et al . Preparation and properties of a new polytriazole resin made from dialkyne and triazide compounds and its composite[J]. Polymer Bulletin, 2008, 60(4): 457-465. |
18 | Wang X , Zhao Z , Tian J , et al . Synthesis and characterization of a new polytriazole resin derived from N,N-dipropargyl-p-propargyloxyaniline[J]. Polymer Journal, 2009, 41(6): 498-502. |
19 | Li Y , Zhou H , Yanpeng E , et al . Synthesis and characterization of a new series of rigid polytriazole resins[J]. Designed Monomers and Polymers, 2013, 16(6): 556-563. |
20 | Wang Y , Wan L , Han D , et al . Investigation of novel polytriazole resins[J]. Designed Monomers & Polymers, 2016, 19(7): 1-8. |
21 | Xue L , Wan L , Hu Y , et al . Thermal stability of a novel polytriazole resin[J]. Thermochimica Acta, 2006, 448(2): 147-153. |
22 | Huang F , Wan L , Du L , et al . The effects of structures on properties of new polytriazole resins[M]//Mittal V. High Performance Polymers and Engineering Plastics. New Jersey: John Wiley & Sons, Inc., 2011: 243-267. |
23 | Huang J , Wan L , Jian Z , et al . Synthesis and characterization of a novel silicon-containing polytriazole resin[J]. Journal of Applied Polymer Science, 2010, 114(3): 1725-1730. |
24 | Tian J , Wan L , Huang J , et al . Synthesis and characterization of a novel polytriazole resin with low-temperature curing character[J]. Polymers for Advanced Technologies, 2010, 18(7): 556-561. |
25 | E Y, Wan L , Huang F , et al . New heat-resistant polytriazole adhesives: investigation of adhesion of polytriazole resins to metals[J]. J. Adhes. Sci. Technol., 2013, 27(16): 1767-1777. |
26 | Jiang S , Wan L , Zhou X , et al . Synthesis and property of polytriazole resins derived from dipropargyl ethynylaniline[J]. Polymer Materials Science & Engineering, 2018, 34(3): 17-21. |
27 | 潘博, 王露雨, 王海军, 等 . 聚三唑酯树脂的合成及其性能[J]. 过程工程学报, 2019, 19(1): 181-188. |
Pan B , Wang L Y , Wang H J , et al . Synthesis and properties of poly(triazole ester) resins[J]. The Chinese Journal of Process Engineering 2019, 19(1): 181-188. | |
28 | 黄建智, 万里强, 田建军, 等 . 1,3-二(炔丙基氧)苯与4,4'-二叠氮甲基联苯聚合反应及聚合物性能的研究[J]. 化学学报, 2007, 65(22): 2629-2634. |
Huang J Z , Wan L Q , Tian J J , et al . Study on polymerization of 1,3-di(propargyloxy)benzene with 4,4'-diazide methyl biphenyl and properties of polymer[J]. Acta Chimica Sinica, 2007, 65(22): 2629-2634. | |
29 | 扈艳红, 罗永红, 万里强, 等 . 双酚A二炔丙基醚与4,4’-联苯二苄叠氮的合成及聚合反应研究[J]. 高分子学报, 2005, (4): 560-565. |
Hu Y H , Luo Y H , Wan L Q , et al . 1,3-Dipolar cycloaddition polymerization of bispropargyl ether of bisphenol-A with 4,4'-biphenyl dibenzyl azide and their thermal analyses[J]. Acta Polymerica Sinica, 2005, (4): 560-565. | |
30 | Ohashi S , Kilbane J , Heyl T , et al . Synthesis and characterization of cyanate ester functional benzoxazine and its polymer[J]. Macromolecules, 2015, 48(23): 8412-8417. |
31 | 罗渝然 . 化学键能数据手册[M]. 北京: 科学出版社, 2005: 100-224. |
Luo Y R . Chemical Bond Energy Data Handbook [M]. Beijing: Science Press, 2005: 100-224. | |
32 | 谭德新, 王艳丽, 吴小乐, 等 . 二炔丙基双酚A醚聚合物的非等温热分解过程[J]. 固体火箭技术, 2015, 38(6): 877-881. |
Tan D X , Wang Y L , Wu X L , et al . Non-isothermal thermal decomposition process of dipropargyl bisphenol A ether polymer[J]. Journal of Solid Rocket Technology, 2015, 38(6): 877-881. | |
33 | Raghunanan L , Narine S S . Influence of structure on chemical and thermal stability of aliphatic diesters[J]. Journal of Physical Chemistry B, 2013, 117(47): 14754-14762. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[3] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[4] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[5] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[6] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[13] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[14] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[15] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||