化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4520-4531.DOI: 10.11949/0438-1157.20200214
徐彦芹1(),杨锡智1,罗若诗1,黄玉红2,霍锋2,王丹1()
收稿日期:
2020-03-02
修回日期:
2020-04-25
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
王丹
作者简介:
徐彦芹(1984—),女,博士研究生,高级工程师,基金资助:
Yanqin XU1(),Xizhi YANG1,Ruoshi LUO1,Yuhong HUANG2,Feng HUO2,Dan WANG1()
Received:
2020-03-02
Revised:
2020-04-25
Online:
2020-10-05
Published:
2020-10-05
Contact:
Dan WANG
摘要:
合成生物学是以工程学思想为指导,对天然生物基因组进行改造和重构,合成新的生物元件,构建新的代谢途径,生产新产品或获得新表型的新兴学科。生物基塑料是以天然物质为原料在微生物作用或化学反应下生成的塑料。利用合成生物学改造工程菌株的方法制备合成生物基塑料已经成为学术界和产业界关注的热点。本文综述了合成生物学的发展和重要的合成生物学技术,重点综述了利用合成生物学技术构建聚羟基烷酸酯、尼龙、聚乳酸和丁二酸丁二醇酯等生物基塑料聚合物单体及其衍生物的代谢途径和工程优化领域的研究进展。
中图分类号:
徐彦芹, 杨锡智, 罗若诗, 黄玉红, 霍锋, 王丹. 合成生物学在生物基塑料制造中的应用[J]. 化工学报, 2020, 71(10): 4520-4531.
Yanqin XU, Xizhi YANG, Ruoshi LUO, Yuhong HUANG, Feng HUO, Dan WANG. Application of synthetic biology in manufacture of bio-based plastics[J]. CIESC Journal, 2020, 71(10): 4520-4531.
工程细菌或工程细胞 | 改造方式/手段 | 原料 | 产物单体/生物基材料 | 应用 | 文献 |
---|---|---|---|---|---|
Escherichia coli | 丙酰辅酶A转移酶(pct)以及真养产碱杆菌的PHA合成酶等基因 | 葡萄糖 | 3HV | PHA | [ |
Escherichia coli | 大肠杆菌中导入固氮菌属的phaABC基因和phaP基因 | 甘油 | PHB | PHB | [ |
烟草 | 烟草中导入含有不动杆菌属和巨大芽孢杆菌基因 | CO2 | PHB | PHB | [ |
Escherichia coli | 敲除基因消除代谢途径;过表达赖氨酸脱羧酶基因 | 葡萄糖 | 戊二胺 | 尼龙5,4和尼龙5,6等 | [ |
Corynebacterium glutamicum | 大肠杆菌中的木糖异构酶基因xylA、木酮糖激酶基因xylB与赖氨酸脱羧酶基因cadA在谷氨酸棒状杆菌中共表达 | 木糖 | 戊二胺 | 尼龙5,10和尼龙5,12等 | [ |
Corynebacterium glutamicum | 培养基中添加吐温40 | 葡萄糖 | 戊二胺 | 尼龙5,4和尼龙5,12等 | [ |
Escherichia coli | 基因DavB和DavA过表达 | 酪氨酸 | 5-氨基戊酸 | 尼龙5和尼龙6,5等 | [ |
Escherichia coli | 基因LeuA、LeuB、LeuC、LeuD、KivD和PadA过表达 | 酪氨酸 | 6-氨基己酸 | 尼龙6 | [ |
Escherichia coli | 乙酸激酶基因ackA敲除,过表达乳酸脱氢酶基因LDH | 葡萄糖 | PLA | PLA | [ |
Escherichia coli | 导入丙酮酸羧化酶基因pyc | 葡萄糖 | 丁二酸 | PBS | [ |
表1 工程细菌或工程细胞生产生物基塑料应用实例
Table 1 Examples of applications of engineered bacteria or engineered cells to produce bio-based plastics
工程细菌或工程细胞 | 改造方式/手段 | 原料 | 产物单体/生物基材料 | 应用 | 文献 |
---|---|---|---|---|---|
Escherichia coli | 丙酰辅酶A转移酶(pct)以及真养产碱杆菌的PHA合成酶等基因 | 葡萄糖 | 3HV | PHA | [ |
Escherichia coli | 大肠杆菌中导入固氮菌属的phaABC基因和phaP基因 | 甘油 | PHB | PHB | [ |
烟草 | 烟草中导入含有不动杆菌属和巨大芽孢杆菌基因 | CO2 | PHB | PHB | [ |
Escherichia coli | 敲除基因消除代谢途径;过表达赖氨酸脱羧酶基因 | 葡萄糖 | 戊二胺 | 尼龙5,4和尼龙5,6等 | [ |
Corynebacterium glutamicum | 大肠杆菌中的木糖异构酶基因xylA、木酮糖激酶基因xylB与赖氨酸脱羧酶基因cadA在谷氨酸棒状杆菌中共表达 | 木糖 | 戊二胺 | 尼龙5,10和尼龙5,12等 | [ |
Corynebacterium glutamicum | 培养基中添加吐温40 | 葡萄糖 | 戊二胺 | 尼龙5,4和尼龙5,12等 | [ |
Escherichia coli | 基因DavB和DavA过表达 | 酪氨酸 | 5-氨基戊酸 | 尼龙5和尼龙6,5等 | [ |
Escherichia coli | 基因LeuA、LeuB、LeuC、LeuD、KivD和PadA过表达 | 酪氨酸 | 6-氨基己酸 | 尼龙6 | [ |
Escherichia coli | 乙酸激酶基因ackA敲除,过表达乳酸脱氢酶基因LDH | 葡萄糖 | PLA | PLA | [ |
Escherichia coli | 导入丙酮酸羧化酶基因pyc | 葡萄糖 | 丁二酸 | PBS | [ |
1 | Shanmugam S, Ngo H H, Wu Y R. Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: a review[J]. Renewable Energy, 2020, 149: 1107-1119. |
2 | Das M, Patra P, Ghosh A. Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109562. |
3 | Niu F X, Lu Q, Bu Y F, et al. Metabolic engineering for the microbial production of isoprenoids: carotenoids and isoprenoid-based biofuels[J]. Synthetic and Systems Biotechnology, 2017, 2(3): 167-175. |
4 | Jin Y S, Cate J H. Metabolic engineering of yeast for lignocellulosic biofuel production[J]. Current Opinion in Chemical Biology, 2017, 41: 99-106. |
5 | Jong B D, Siewers V, Nielsen J. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels[J]. Current Opinion in Biotechnology, 2012, 23(4): 624-630. |
6 | Wang F Z, Zhang W W. Synthetic biology: recent progress, biosafety and biosecurity concerns, and possible solutions[J]. Journal of Biosafety and Biosecurity, 2019, 1(1): 22-30. |
7 | Larsson C M. Biological basis for protection of the environment[J]. Annals of the ICRP, 2012, 41(3/4): 208-217. |
8 | Handy R D. Systems toxicology: using the systems biology approach to assess chemical pollutants in the environment[J]. Advances in Experimental Biology, 2008, 2: 249-281. |
9 | Wang D, Zheng Y N, Xu L N, et al. Engineered cells for selective detection and remediation of Hg2+ based on transcription factor MerR regulated cell surface displayed systems[J]. Biochemical Engineering Journal, 2019, 150: 107289. |
10 | Briassoulis D, Mistriotis A, Mortier N, et al. A horizontal test method for biodegradation in soil of bio-based and conventional plastics and lubricants[J]. Journal of Cleaner Production, 2020, 242: 118392. |
11 | Spierling S, Knüpffer E, Behnsen H, et al. Bio-based plastics—a review of environmental, social and economic impact assessments[J]. Journal of Cleaner Production, 2018, 185: 476-491. |
12 | Lambert S, Wagner M. Environmental performance of bio-based and biodegradable plastics: the road ahead[J]. Chemical Society Reviews, 2017, 46(22): 6855-6871. |
13 | Hards K, Cook G M. Targeting bacterial energetics to produce new antimicrobials[J]. Drug Resistance Updates, 2018, 36: 1-12. |
14 | Zhang G Q, Zhao X R, Li X L, et al. Challenges and possibilities for bio-manufacturing cultured meat[J]. Trends in Food Science & Technology, 2020, 97: 443-450. |
15 | Jin S, Clark B, Kuznesof S, et al. Synthetic biology applied in the agrifood sector: public perceptions, attitudes and implications for future studies[J]. Trends in Food Science & Technology, 2019, 91: 454-466. |
16 | Mangiagalli M, Brocca S, Orlando M, et al. The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins[J]. New Biotechnology, 2020, 55: 5-11. |
17 | Carrera M, Cañas B, Gallardo J M. Advanced proteomics and systems biology applied to study food allergy[J]. Current Opinion in Food Science, 2018, 22: 9-16. |
18 | Fish K D, Rubio N R, Stout A J, et al. Prospects and challenges for cell-cultured fat as a novel food ingredient. Prospects and challenges for cell-cultured fat as a novel food ingredient[J]. Trends in Food Science & Technology, 2020, 98: 53-67. |
19 | Teusink B, Molenaar D. Systems biology of lactic acid bacteria: for food and thought[J]. Current Opinion in Systems Biology, 2017, 6: 7-13. |
20 | Rachid B R, Ralf G B. Bio-mediated generation of food flavors — towards sustainable flavor production inspired by nature[J]. Trends in Food Science & Technology, 2018, 78: 134-143. |
21 | Gao Y Y, Deng C, Du Y Y, et al. A novel bio-based flame retardant for polypropylene from phytic acid[J]. Polymer Degradation and Stability, 2019, 161: 298-308. |
22 | Lorini L, Re F D, Majone M, et al. High rate selection of PHA accumulating mixed cultures in sequencing batch reactors with uncoupled carbon and nitrogen feeding [J]. New Biotechnology, 2020, 56: 140-148. |
23 | Wang X F, Bengtsson S, Oehmen A, et al. Application of dissolved oxygen (DO) level control for polyhydroxyalkanoate (PHA) accumulation with concurrent nitrification in surplus municipal activated sludge[J]. New Biotechnology, 2019, 50: 37-43. |
24 | Colombo B, Calvo M V, Sciarria T P. Biohydrogen and polyhydroxyalkanoates (PHA) as products of a two-steps bioprocess from deproteinized dairy wastes [J]. Waste Management, 2019, 95: 22-31. |
25 | Dinesh G H, Nguyen D D, Ravindran B, et al. Simultaneous biohydrogen (H2) and bioplastic (poly-β-hydroxybutyrate-PHB) productions under dark, photo, and subsequent dark and photo fermentation utilizing various wastes[J]. International Journal of Hydrogen Energy, 2020, 45(10): 5840-5853. |
26 | Perveen K, Masood F, Hameed A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles[J]. International Journal of Biological Macromolecules, 2020, 144: 259-266. |
27 | Jung H R, Choi T R, Han Y H, et al. Production of blue-colored polyhydroxybutyrate (PHB) by one-pot production and coextraction of indigo and PHB from recombinant Escherichia coli[J]. Dyes and Pigments, 2020, 173: 107889. |
28 | Essabir H, Ouadi M O, Rodrigue D, et al. Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent[J]. Carbohydrate Polymers, 2016, 143: 70-83. |
29 | Yang Y H, Brigham C J, Song E, et al. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of 3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase[J]. Journal of Applied Microbiology, 2012, 113(4): 815-823. |
30 | Bohmert-Tatarev K, Mcavoy S, Daughtry S, et al. High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate[J]. Plant Physiology, 2011, 155(4): 1690-1708. |
31 | De Almeida A, Giordano A, Nikel P, et al. Effects of aeration on the synthesis of poly(3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli[J]. Applied and Environmental Microbiology, 2010, 76(6): 2036-2040. |
32 | Qian Z G, Xia X X, Lee S Y. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine[J]. Biotechnol. Bioeng., 2011, 108(1): 93-103. |
33 | Buschke N, Schroderh, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose [J]. Biotechnology Journal,2011, 6(3): 306-317. |
34 | Matsushima Y, Hirasawa T, Shimizu H. Enhancement of 1,5-diaminopentane production in a recombinant strain of Corynebacterium glutamicum by Tween 40 addition[J]. J. Gen. Appl. Microbiol., 2016, 62(1): 42-45. |
35 | Adkins J, Jordan J, Nielsen D R. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate[J]. Biotechnol. Bioeng., 2013, 110(6): 1726-1734. |
36 | Cheng J, Hu G, Xu Y, et al. Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative carbon-chain-extension cycle[J]. Metabolic Engineering, 2019, 55: 23-32. |
37 | 时梦询. 基于工程大肠杆菌的聚乳酸生物合成途径研究[D]. 青岛: 青岛科技大学, 2018. |
Shi M X. Biosynthesis of poly (lactic acid) by engineered Escherichia coli[D]. Qingdao: Qingdao University of Science and Technology, 2018. | |
38 | Vemuri G N, Eiteman M A, Altman E. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli[J]. Appl. Environ. Microbiol., 2002, 68(4): 1715-1727. |
39 | Venkatachalam V, Spierling S, Horn R, et al. LCA and eco-design: consequential and attributional approaches for bio-based plastics[J]. Procedia CIRP, 2018, 69: 579-584. |
40 | Spierling S, Röttger C, Venkatachalam V, et al. Bio-based plastics - a building block for the circular economy[J]. Procedia CIRP, 2018, 69: 573-578. |
41 | Cui S Q, Borgemenke J B, Liu Z, et al. Recent advances of “soft” bio-polycarbonate plastics from carbon dioxide and renewable bio-feedstocks via straightforward and innovative routes[J]. Journal of CO2 Utilization, 2019, 34: 40-52. |
42 | 霍鹏. 可降解塑料的研究现状及发展趋势[J]. 工程塑料应用, 2016, 44(3): 150-153. |
Huo P. Research status and development trend of degradable plastics[J]. Engineering Plastics Application, 2016, 44(3): 150-153. | |
43 | Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338. |
44 | Allied Market Research. World synthetic biology market opportunities and forecast, 2014—2020[EB/OL]. [2016-01-10]. . |
45 | National Research Council (US) Committee on a New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology Revolution. A New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology Revolution[M]. Washington: National Academies Press, 2009. |
46 | Cheng A A, Lu T K. Synthetic biology: an emerging engineering discipline[J]. Annual Review of Biomedical Engineering, 2012, 14: 155-178. |
47 | Slusarczyk A L, Lin A, Weiss R. Foundations for the design and implementation of synthetic genetic circuits[J]. Nature Reviews Genetics, 2012, 13(6): 406-420. |
48 | 周益康, 吴亦楠, 王天民, 等. 代谢物生物传感器:微生物细胞工厂构建中的合成生物学工具[J]. 生物技术通报, 2017, 33(1): 1-11. |
Zhou Y K. Wu Y N, Wang T M,et al. Metabolite biosensor: a useful synthetic biology tool to assist the construction of microbial cell factory[J]. Biotechnology Bulletin, 2017, 33(1): 1-11. | |
49 | Binder S, Schendzielorz G, Stäbler N, et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level[J]. Genome Biology, 2012, 13(5): R40-R40. |
50 | 刘耀, 熊莹喆, 蔡镇泽, 等. 基因编辑技术的发展与挑战[J]. 生物工程学报, 2019, 35(8): 1401-1410. |
Liu Y, Xiong Y Z, Cai Z Z, et al. Development and challenges of gene editing technology[J]. Chinese Journal of Biotechnology, 2019, 35(8): 1401-1410. | |
51 | Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering[J]. Journal of Molecular Biology, 2016, 428(5): 963-989. |
52 | 卢俊南, 褚鑫, 潘燕平, 等. 基因编辑技术: 进展与挑战[J]. 中国科学院院刊, 2018, 33(11): 1184-1192. |
Lu J N, Chu X, Pan Y P, et al. Advances and challenges in gene editing technologies[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1184-1192. | |
53 | Ren B, Robert F, Wyrick J J, et al. Genome-wide location and function of DNA binding proteins[J]. Science, 2000, 290: 2306-2309 |
54 | Zimmer D P, Soupene E, Lee H L, et al. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation[J]. Proc. Natl. Acad. Sci., 2000, 97(26): 14674-14679. |
55 | Bioplastics European. Bioplastics-facts and figures [EB/OL]. [2017-10-08]. . |
56 | 黄险波, 王伟伟, 曾祥斌. 生物基降解塑料行业现状[J]. 生物产业技术, 2017, 6: 87-91. |
Huang X B, Wang W W, Zeng X B. Status of bio-based degradable plastics industry[J]. Biotechnology & Business, 2017, 6: 87-91. | |
57 | Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987): 52-56. |
58 | Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21(7): 796-802. |
59 | Amin M, Mardhiah A, Mohd Sauid S, et al. Polymer-starch blend biodegradable plastics: an overview[J]. Advanced Materials Research, 2015, 1113: 93-98. |
60 | Chen G Q, Jiang X R, Guo Y Y. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA)[J]. Synthetic and Systems Biotechnology, 2016, 4(1): 236-242 |
61 | Wang R Y, Shi Z Y, Chen J C, et al. Cloning large gene clusters from E. coli using in vitro single-strand overlapping annealing[J]. ACS Synthetic Biology, 2012, 1(7): 291-295. |
62 | Wang R Y, Shi Z Y, Chen J C, et al. Enhanced co-production of hydrogen and poly-(R)-3-hydroxybutyrate by recombinant PHB producing E. coli over-expressing hydrogenase 3 and acetyl-CoA synthetase[J]. Metabolic Engineering, 2012, 14(5): 496-503. |
63 | Poblete-Castro I, Binger D, Rodrigues A, et a1. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates[J]. Metab. Eng., 2013, 15: l13-123. |
64 | Lv L, Ren Y L, Chen J C, et a1. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis[J]. Metab. Eng., 2015, 29: 160-168. |
65 | Yang J E, Choi Y J, Lee S J, et al. Metabolic engineering of Escherichia coli for biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 95-104. |
66 | Yang Y X, Lu W H, Zhang X Y, et al. Two-step biocatalytic route to biobased functional polyesters from ω-carboxy fatty acids and diols[J]. Biomacromolecules, 2009, 11(1): 259-268. |
67 | Smit M S, Mokgoro M M, Setati E, et al. α, ω-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica[J]. Biotechnology Letters, 2005, 27(12): 859-864. |
68 | Picataggio S, Rohrer T, Deanda K, et al. Metabolic engineering of Candida tropicalis for the production of long–chain dicarboxylic acids[J]. Bio/technology, 1992, 10(8): 894-898. |
69 | Craft D L, Madduri K M, Eshoo M, et al. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to α, ω-dicarboxylic acids[J]. Appl. Environ. Microbiol., 2003, 69(10): 5983-5991. |
70 | Picataggio S, Beardslee T. Biological methods for preparing adipic acid: US8241879[P]. 2012-8-14. |
71 | Beardslee T, Picataggio S. Bio-based adipic acid from renewable oils[J]. Lipid Technology, 2012, 24(10): 223-225. |
72 | Lin Y H, Sun X X, Yuan Q P, et al. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli[J]. Metabolic Engineering, 2014, 23: 62-69. |
73 | Lu J, Meng H, Meng Z, et al. Epsilon aminocaproic acid reduces blood transfusion and improves the coagulation test after pediatric open-heart surgery: a meta-analysis of 5 clinical trials[J]. International Journal of Clinical and Experimental Pathology, 2015, 8(7): 7978-7987. |
74 | Turk S C H J, Kloosterman W P, Ninaber D K, et al. Metabolic engineering toward sustainable production of nylon-6[J]. ACS Synthetic Biology, 2015, 5(1): 65-73. |
75 | Chae T U, Ko Y S, Hwang K S, et al. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams[J]. Metabolic Engineering, 2017, 41: 82-91. |
76 | Zhou H, Vonk B, Roubos J A, et al. Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor[J]. Nucleic Acids Research, 2015, 43(21): 10560-10570. |
77 | Park S J, Kim E Y, Noh W, et al. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals[J]. Metabolic Engineering, 2013, 16: 42-47. |
78 | Ma W, Cao W, Zhang H, et al. Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB[J]. Biotechnol. Lett., 2015, 37(4): 799-806. |
79 | Cheng J, Zhang Y, Huang M, et al. Enhanced 5‐aminovalerate production in Escherichia coli from L-lysine with ethanol and hydrogen peroxide addition[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3492-3501. |
80 | Grabar T B, Zhou S, Shanmugam K T, et al. Methylglyoxal bypass identified as source of chiral contamination in L (+) and D (-)-lactate fermentations by recombinant Escherichia coli[J]. Biotechnology Letters, 2006, 28(19): 1527-1535. |
81 | 周丽. 高产高纯D -乳酸的E. coli代谢工程菌的构建[D]. 无锡: 江南大学, 2012. |
Zhou L. Construction of metabolically engineered E. coli producing high titer of pure D-lactate[D]. Wuxi: Jiangnan University, 2012. | |
82 | Andersson C, Hodge D, Berglund K A, et al. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli[J]. Biotechnology Progress, 2007, 23(2): 381-388. |
83 | Liu R, Liang L, Ma J, et al. An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma[J]. Process Biochemistry, 2013, 48(11): 1603-1609. |
84 | Bai B, Zhou J, Yang M H, et al. Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli[J]. Bioresource Technology, 2015, 185: 56-61. |
85 | Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the National Academy of Sciences, 2000, 97(12): 6640-6645. |
86 | Jantama K, Haupt M J, Svoronos S A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153. |
87 | Li Y, Huang B, Wu H, et al. Production of succinate from acetate by metabolically engineered Escherichia coli[J]. ACS Synthetic Biology, 2016, 5(11): 1299-1307. |
88 | Huang M H, Cheng J, Chen P, et al. Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate[J]. Journal of Environmental Management, 2019, 237: 147-154. |
[1] | 赵春雷, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 刘立明, 陈修来. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111-2122. |
[2] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[3] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[4] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[5] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[6] | 王欣慧, 王颖, 姚明东, 肖文海. 维生素A生物合成的研究进展[J]. 化工学报, 2022, 73(10): 4311-4323. |
[7] | 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324. |
[8] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
[9] | 王欣, 赵鹏, 李清扬, 田平芳. 半导体合成生物学的研究进展[J]. 化工学报, 2021, 72(5): 2426-2435. |
[10] | 郑煜堃, 孙青, 陈振, 于慧敏. 微生物细胞工厂生产化学品的研究进展——以几种典型小分子和大分子化学品为例[J]. 化工学报, 2021, 72(12): 6109-6121. |
[11] | 赵贞尧, 张保财, 李锋, 宋浩. 产电细胞的合成生物学设计构建[J]. 化工学报, 2021, 72(1): 468-482. |
[12] | 王凯峰, 王金鹏, 韦萍, 纪晓俊. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物[J]. 化工学报, 2021, 72(1): 351-365. |
[13] | 王炼, 吴迪, 周景文. 木脂素的生物合成及其微生物法生产的研究进展[J]. 化工学报, 2021, 72(1): 320-333. |
[14] | 秦磊, 俞杰, 宁小钰, 孙文涛, 李春. 合成生物系统构建与绿色生物“智”造[J]. 化工学报, 2020, 71(9): 3979-3994. |
[15] | 高虎涛, 申晓林, 孙新晓, 王佳, 袁其朋. 代谢工程调控策略在生物合成氨基酸及其衍生物中的应用[J]. 化工学报, 2020, 71(9): 4058-4070. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||