化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4502-4519.DOI: 10.11949/0438-1157.20191305
收稿日期:
2019-11-01
修回日期:
2019-12-24
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
周才龙
作者简介:
陈立(1994—),男,博士研究生,基金资助:
Li CHEN(),Cailong ZHOU(),Jingcheng DU,Wei ZHOU,Luxi TAN,Lichun DONG
Received:
2019-11-01
Revised:
2019-12-24
Online:
2020-10-05
Published:
2020-10-05
Contact:
Cailong ZHOU
摘要:
多孔材料如金属有机框架材料(MOFs)、共价有机框架材料(COFs)、有机多孔聚合物(POPs)等由于构筑单元的多样性、可设计性,孔道的可调控性和功能化,已经被广泛用于分离、催化、气体储存以及药物释放等领域。尽管如此,这些多孔材料固有的结构特征让它们普遍对水气非常敏感,最严重时多孔结构在水溶液环境下会坍塌。为解决此类问题,制备疏水的多孔材料是一个非常好的策略。然而,设计超疏水多孔材料具有一定的挑战。介绍了具有(超)疏水性能的MOFs、COFs和POPs的发展现状,对超疏水多孔材料合成思路和结构特点进行了分析,对这类材料在催化、油水分离、气体吸附和分离等方面的应用进行了总结,并进一步探讨了此类材料存在的问题和发展方向。
中图分类号:
陈立, 周才龙, 杜京城, 周威, 谭陆西, 董立春. 超疏水多孔材料的研究进展[J]. 化工学报, 2020, 71(10): 4502-4519.
Li CHEN, Cailong ZHOU, Jingcheng DU, Wei ZHOU, Luxi TAN, Lichun DONG. Progress of superhydrophobic porous materials[J]. CIESC Journal, 2020, 71(10): 4502-4519.
1 | Slater A G, Cooper A I. Function-led design of new porous materials[J]. Science, 2015, 348: aaa8075. |
2 | 崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352. |
Cui X L, Xing H B. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018, 69(6): 2339-2352. | |
3 | Cooper A I. Conjugated microporous polymers[J]. Adv. Mater., 2009, 21(12): 1291-1295. |
4 | Luo Y, Li B, Wang W, et al. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials[J]. Adv. Mater., 2012, 24(42): 5703-5707. |
5 | Du N, Park H B, Dal-Cin M M, et al. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energ. Environ. Sci., 2012, 5(6): 7306-7322. |
6 | Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310: 1166-1170. |
7 | Fan H, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. J. Am. Chem. Soc., 2018, 140: 10094-10098. |
8 | Jiang Y, Liu C, Li Y, et al. Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation[J]. J. Membr. Sci., 2019, 587: 117177. |
9 | Fang Q, Wang J, Gu S, et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. J. Am. Chem. Soc., 2015, 137(26): 8352-8355. |
10 | Xu H S, Ding S Y, An W K, et al. Constructing crystalline covalent organic frameworks from chiral building blocks[J]. J. Am. Chem. Soc., 2016, 138(36): 11489-11492. |
11 | Xu F, Yang S, Jiang G, et al. Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 37731-37738. |
12 | Park K S, Ni Z, Cote A P, et al. From the cover: exceptional chemical and thermal stability of zeolitic imidazolate framework[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(27): 10186-10191. |
13 | Moghadam P Z, Ivy J F, Arvapally R K, et al. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation[J]. Chem. Sci., 2017, 8(5): 3989-4000. |
14 | 曾新娟, 王丽, 皮丕辉,等. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30: 73-86. |
Zeng X J, Wang L, Pi P H, et al. Development and research of special wettability materials for oil/water separation[J]. Progress in Chemistry, 2018, 30: 73-86. | |
15 | Young T. An essay on the cohesion of fluids[J]. Phil. Trans. R. Soc., 1805, 95: 65-87. |
16 | Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28(8): 988-994. |
17 | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40(1): 546-551. |
18 | Wang S T, Jiang L. Definition of superhydrophobic states[J]. Adv. Mater., 2007, 19(21): 3423-3424. |
19 | Mehran G, Fugen D, Elena P I, et al. Bio-inspired sustainable and durable superhydrophobic materials: from nature to market[J]. J. Mater. Chem. A, 2019, 7: 16643-16670. |
20 | Darmanin T, Givenchy E T, Amigoni S, et al. Superhydrophobic surfaces by electrochemical processes[J]. Adv. Mater., 2013, 25: 1378-1394. |
21 | Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
22 | Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: an inspiration for biomimetics[J]. Prog. Mater. Sci., 2009, 54(2): 137-178. |
23 | Si Y F, Guo Z G. Superhydrophobic nanocoatings: from materials to fabrications and to applications[J]. Nanoscale, 2015, 7: 5922-5946. |
24 | Shin S, Seo J, Han H, et al. Bio-inspired extreme wetting surfaces for biomedical applications[J]. Materials, 2016, 9(2): 116. |
25 | Tsutomu M. Advanced sol-gel coatings for practical applications[J]. J. Sol-Gel Sci. Technol., 2013, 65: 4-11. |
26 | Vazirinasab E, Jafari R, Momen G. Application of superhydrophobic coatings as a corrosion barrier: a review[J]. Surf. Coat. Technol., 2018, 341(15): 40-56. |
27 | Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: from structural control to functional application[J]. J. Mater. Chem., 2008, 18(6): 621-633. |
28 | Li L X, Li B C, Dong J, et al. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials[J]. J. Mater. Chem. A, 2016, 4(36): 13677-13725. |
29 | Tian Y, Su B, Jiang L, et al. Interfacial material system exhibiting superwettability[J]. Adv. Mater., 2014, 26: 6872-6897. |
30 | Chu Z L, Feng Y J, Seeger S F. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angew. Chem. Int. Ed., 2015, 54(8): 2328-2338. |
31 | 刘光启, 马连湘, 刘杰. 化学化工物性数据手册(有机卷)[M]. 北京: 化学工业出版社, 2001. |
Liu G Q, Ma L X, Liu J. Chemical and Chemical Physical Property Data Book [M]. Beijing: Chemical Industry Press, 2001. | |
32 | Brown P S, Bhushan B. Designing bioinspired superoleophobic surfaces[J]. APL Mater., 2016, 4(1): 015703. |
33 | Milionis A, Bayer I S, Loth E. Recent advances in oil-repellent surfaces[J]. Int. Mater. Rev., 2016, 61(2): 101-126 |
34 | Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15(13): 4321-4323. |
35 | Yang C, Wang X P, Omary M A. Fluorous metal-organic frameworks for high-density gas adsorption[J]. J. Am. Chem. Soc., 2007, 129(50): 15454-15455. |
36 | Yang C, Kaipa U, Zhang Q, et al. Mather fluorous metal organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage[J]. J. Am. Chem. Soc., 2011, 133(45): 18094-18097. |
37 | Jiang Z R, Ge J, Zhou Y X, et al. Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water[J]. NPG Asia Mater., 2016, 8: e253. |
38 | Padial N M, Procopio E Q, Montoro C, et al. Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds[J]. Angew. Chem. Int. Ed., 2013, 52: 8290-8294. |
39 | Mukherjee S, Kansara A M, Saha D, et al. An ultrahydrophobic fluorous metal-organic framework derived recyclable composite as a promising platform to tackle marine oil spills[J]. Chem. Eur. J., 2016, 22: 10937-10943. |
40 | Chen T H, Popov I, Zenasni O, et al. Superhydrophobic perfluorinated metal-organic frameworks[J]. Chem. Commun., 2013, 49: 6846-6848. |
41 | Liu C, Huang A S. One-step synthesis of the superhydrophobic zeolitic imidazolate framework F-ZIF-90 for efficient removal of oil[J]. New J. Chem., 2018, 42(4): 2372-2375. |
42 | Moghadam P Z, Ivy J F, Arvapally R K, et al. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation[J]. Chem. Sci., 2017, 8(5): 3989-4000. |
43 | Noro S I, Nakamura T. Fluorine-functionalized metal-organic frameworks and porous coordination polymers[J]. NPG Asia Mater., 2017, 9(9): e433. |
44 | Wang B, Lv X L, Feng D, et al. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. J. Am. Chem. Soc., 2016, 138(19): 6204-6216. |
45 | Makal T A, Wang X, Zhou H C. Tuning the moisture and thermal stability of metal-organic frameworks through incorporation of pendant hydrophobic groups[J]. Cryst. Growth Des., 2013, 13(11): 4760-4768. |
46 | Roy S, Suresh V M, Maji T K, et, al. Self-cleaning MOF: realization of extreme water repellence in coordination driven self-assembled nanostructures[J]. Chem. Sci., 2016, 7(3): 2251-2256. |
47 | Zhu N X, Wei Z W, Chen C X, et al. Self-generation of surface roughness by low-surface-energy alkyl chains for highly stable superhydrophobic/superoleophilic MOFs with multiple functionalities[J]. Angew. Chem. Int. Ed., 2019, 58: 17033-17040. |
48 | Zhang M H, Xin X L, Xiao Z Y, et al. A multi-aromatic hydrocarbon unit induced hydrophobic metal-organic framework for efficient C2/C1 hydrocarbon and oil/water separation[J]. J. Mater. Chem. A, 2017, 5(3): 1168-1175. |
49 | Zhang M H, Guo B B, Feng Y, et al. Amphipathic pentiptycene-based water-resistant Cu-MOF for efficient oil/water separation[J]. Inorg. Chem., 2019, 58(9): 5384-5387. |
50 | Xie L H, Liu X M, He T, et al. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem, 2018, 4(8): 1911-1927. |
51 | Nguyen J G, Cohen S M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification[J]. J. Am. Chem. Soc., 2010, 132(13): 4560-4561. |
52 | Eom S, Kang D W, Kang M J, et al. Fine-tuning of wettability in a single metal-organic framework via post coordination modification and its reduced graphene oxide aerogel for oil-water separation[J]. Chem. Sci., 2019, 10(9): 2663-2669. |
53 | Canivet J, Aguado S, Daniel C, et al. Engineering the environment of a catalytic metal-organic framework by postsynthetic hydrophobization[J]. ChemCatChem, 2011, 3(4): 675- 678. |
54 | Liu C Y, Liu Q, Huang A S. A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols[J]. Chem. Commun., 2016, 52: 3400-3402. |
55 | Zhang H F, Li M, Wang X Z, et al. Fine-tuning metal-organic framework performances by spatially-differentiated postsynthetic modification[J]. J. Mater. Chem. A, 2018, 6: 4260-4265. |
56 | Sun Q, He H M, Gao W Y, et al. Imparting amphiphobicity on single-crystalline porous materials[J]. Nat. Commun., 2016, 7: 13300. |
57 | Zha Q J, Sang X X, Liu D Y, et al. Modification of hydrophilic amine-functionalized metal-organic frameworks to hydrophobic for dye adsorption[J]. J. Solid State Chem., 2019, 27: 523-29. |
58 | Yang S L, Peng L, Sun D T, et al. A new post-synthetic polymerization strategy makes metal-organic frameworks more stable[J]. Chem. Sci., 2019, 10(17): 4542-4549. |
59 | Zhang W, Hu Y L, Ge J, et al. A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity[J]. J. Am. Chem. Soc., 2014, 136(49): 16978-16981. |
60 | Yim C Y, Jeon S M. Direct synthesis of Cu-BDC frameworks on a quartz crystal microresonator and their application to studies of n-hexane adsorption[J]. RSC Adv., 2015, 5: 67454-67458. |
61 | Meng W, Feng Z J, Li F, et al. Porous coordination polymer coatings fabricated from Cu3(BTC)2∙3H2O with excellent superhydrophobic and superoleophilic properties[J]. New J. Chem., 2016, 40(12): 10554-10559. |
62 | Kang Z X, Wang S S, Fan L L, et al. Surface wettability switching of metal-organic framework mesh for oil-water separation[J]. Mater. Lett., 2017, 189: 82-85. |
63 | Qian X K, Sun F X, Sun J, et al. Imparting surface hydrophobicity to metal-organic frameworks using a facile solution-immersion process to enhance water stability for CO2 capture[J]. Nanoscale, 2017, 9(5): 2003-2008. |
64 | Wen G, Guo Z G. Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution[J]. Colloids Surf. A, 2018, 541: 58-67. |
65 | Du J C, Zhang C Y, Pu H, et al. HKUST-1 MOFs decorated 3D copper foam with superhydrophobicity/superoleophilicity for durable oil/water separation[J]. Colloids Surf. A, 2019, 573: 222-229. |
66 | Su P C, Zhang X, Li Y, et al. Distillation of alcohol/water solution in hybrid metal-organic framework hollow fibers[J]. AIChE J., 2019, 65(9): e16693. |
67 | Yuan S S, Zhu J Y, Li Y, et al. Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface[J]. J. Mater. Chem. A, 2019, 7(6): 2723-2729. |
68 | Jayaramulu K, Datta K K R, Rösler C, et al. Biomimetic superhydrophobic/superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil-water separation[J]. Angew. Chem. Int. Ed., 2016, 55(3): 1178-1182. |
69 | Mullangi D, Shalini S, Nandi S, et al. Super-hydrophobic covalent organic frameworks for chemical resistant coatings and hydrophobic paper and textile composites[J]. J. Mater. Chem. A, 2017, 5(18): 8376-8384. |
70 | Ge Y, Zhou H, Ji Y, et al. Understanding water adsorption and the impact on CO2 capture in chemically stable covalent organic frameworks[J]. J. Phys. Chem. C, 2018, 122(48): 27495-27506. |
71 | Zhao Y, Yao K X, Teng B, et al. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture[J]. Energ. Environ. Sci., 2013, 6(12): 3684-3692. |
72 | Wang G B, Leus K, Jena H S, et al. A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO2 capture performance[J]. J. Mater. Chem. A, 2018, 6(15): 6370-6375. |
73 | Sun Q, Aguila B, Perman J A, et al. Integrating superwettability within covalent organic frameworks for functional coating[J]. Chem, 2018, 4(7): 1726-1739. |
74 | Li X, Zhang C, Cai S, et al. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks[J]. Nat. Commun., 2018, 9(1): 2998. |
75 | Nandi S, Werner-Zwanziger U, Vaidhyanathan R. A triazine-resorcinol based porous polymer with polar pores and exceptional surface hydrophobicity showing CO2 uptake under humid conditions[J]. J. Mater. Chem. A, 2015, 3: 21116-21122. |
76 | Yan Z J, Ren H, Ma H P, et al. Construction and sorption properties of pyrene-based porous aromatic frameworks[J]. Micropor. Mesopor. Mater., 2013, 173: 92-98. |
77 | Shi Q, Sun H X, Yang R X, et al. Synthesis of conjugated microporous polymers for gas storage and selective adsorption[J]. J. Mater. Sci., 2015, 50: 6388-6394. |
78 | Jiao R, Bao L L, Zhang W L, et al. Synthesis of aminopyridine-containing conjugated microporous polymers with excellent superhydrophobicity for oil/water separation[J]. New J. Chem., 2018, 42(18): 14863-14869. |
79 | Li X, Guo J W, Tong R, et al. Microporous frameworks based on adamantane building blocks: synthesis, porosity, selective adsorption and functional application[J]. React. Funct. Polym., 2018, 130: 126-132. |
80 | Dey D, Banerjee P. Toxic organic solvent adsorption by a hydrophobic covalent polymer[J]. New J. Chem., 2019, 43(9): 3769-3777. |
81 | Dey D, Murmu N C, Banerjee P. Tailor-made synthesis of an melamine-based aminal hydrophobic polymer for selective adsorption of toxic organic pollutants: an initiative towards wastewater purification[J]. RSC Adv., 2019, 9(13): 7469-7478. |
82 | Wang X S, Liu J, Bonefont J M, et al. A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons for oil spill cleanup[J]. Chem. Commun., 2013, 49(15): 1533-1535. |
83 | Xiao Z Y, Zhang M H, Fan W D, et al. Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices[J]. Chem. Eng. J., 2017, 326: 640-646. |
84 | Mu P, Sun H X, Zang J K, et al. Facile tunning the morphology and porosity of a superwetting conjugated microporous polymers[J]. React. Funct. Polym., 2016, 106: 105-111. |
85 | Sun Q, Aguila B, Verma G, et al. Superhydrophobicity: constructing homogeneous catalysts into superhydrophobic porous frameworks to protect them from hydrolytic degradation[J]. Chem, 2016, 1(4): 628-639. |
86 | Tang Y Q, Dong K, Wang S, et al. Boosting the hydrolytic stability of phosphite ligand in hydroformylation by the construction of superhydrophobic porous framework[J]. Mol. Catal., 2019, 474: 110408. |
87 | Luo R C, Chen Y J, He Q, et al. Metallosalen-based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals[J]. ChemSusChem, 2017, 10(7): 1526-1533. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[9] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[10] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[11] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[12] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[13] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[14] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[15] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||