化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4783-4791.DOI: 10.11949/0438-1157.20191604
徐彦芹1(),秦钊1(),王烨1,曹渊1(),陈昌国1,王丹2()
收稿日期:
2020-01-02
修回日期:
2020-06-11
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
曹渊,王丹
作者简介:
徐彦芹(1984—),女,硕士,高级工程师,基金资助:
Yanqin XU1(),Zhao QIN1(),Ye WANG1,Yuan CAO1(),Changguo CHEN1,Dan WANG2()
Received:
2020-01-02
Revised:
2020-06-11
Online:
2020-10-05
Published:
2020-10-05
Contact:
Yuan CAO,Dan WANG
摘要:
采用正硅酸乙酯(TEOS)和3-氨丙基三乙氧基硅烷(APTES)通过共缩聚法合成介孔二氧化硅(MCM-41)。首先对其氨基修饰,再通过有机合成接枝—R基团(—R:—CHO、—OH、—CH3、—COOH),制备得到Me-Ph-NH-MCM-41、OHC-Ph-NH-MCM-41、HO-Ph-NH-MCM-41、HOOC-Ph-NH-MCM-41四种不同的药物载体。利用FT-IR、Zeta电位、XRD和SEM对其结构和形貌表征,结果表明NH2-MCM-41改性成功。以罗丹明B(RhB)为模型进行载药性能测试,并考察了此释药系统在模拟不同pH的体液下的敏感释药行为,同时探究了不同—R基团对释药的影响。结果显示,四种载体在中性条件下几乎不发生药物释放,通过改变环境体系pH可以有效控制药物释放,其释药行为可以用Korsmeyer-Peppas动力学模型来描述。实验表明,释药量:RhB@HOOC-Ph-NH-MCM-41>RhB@OHC-Ph-NH-MCM-41>RhB@HO-Ph-NH-MCM-41>RhB@Me-Ph-NH-MCM-41,不同—R基团的药物载体的pH响应性不同,其中RhB@HOOC-Ph-NH-MCM-41释药量在pH=1.2时可达57.87%,在用于药物智能控释材料方面具有一定的应用潜力。
中图分类号:
徐彦芹, 秦钊, 王烨, 曹渊, 陈昌国, 王丹. NH2-MCM-41的改性及其pH响应性释药的研究[J]. 化工学报, 2020, 71(10): 4783-4791.
Yanqin XU, Zhao QIN, Ye WANG, Yuan CAO, Changguo CHEN, Dan WANG. Study on modification of NH2-MCM-41 and its pH-responsive drug release[J]. CIESC Journal, 2020, 71(10): 4783-4791.
载体 | 比表面积/ (m2/g) | 孔容/(cm3/g) | 孔径/nm |
---|---|---|---|
NH2-MCM-41 | 937 | 0.801 | 3.98 |
Me-Ph-NH-MCM-41 | 368 | 0.323 | 3.03 |
OHC-Ph-NH-MCM-41 | 382 | 0.312 | 3.28 |
HO-Ph-NH-MCM-41 | 416 | 0.337 | 3.35 |
HOOC-Ph-NH-MCM-41 | 394 | 0.279 | 3.18 |
表1 NH2-MCM-41和四种药物载体的孔结构参数
Table 1 The pore structural parameter of NH2-MCM-41 and four drug carriers
载体 | 比表面积/ (m2/g) | 孔容/(cm3/g) | 孔径/nm |
---|---|---|---|
NH2-MCM-41 | 937 | 0.801 | 3.98 |
Me-Ph-NH-MCM-41 | 368 | 0.323 | 3.03 |
OHC-Ph-NH-MCM-41 | 382 | 0.312 | 3.28 |
HO-Ph-NH-MCM-41 | 416 | 0.337 | 3.35 |
HOOC-Ph-NH-MCM-41 | 394 | 0.279 | 3.18 |
图4 NH2-MCM-41和四种药物载体的FT-IR谱图a—NH2-MCM-41; b—Me-Ph-NH-MCM-41; c—OHC-Ph-NH-MCM-41; d—HO-Ph-NH-MCM-41; e—HOOC-Ph-NH-MCM-41
Fig.4 FT-IR spectra of NH2-MCM-41 and four drug carriers
载体 | Zeta电位值/mV |
---|---|
NH2-MCM-41 | +29.2 |
Me-Ph-NH-MCM-41 | +8.1 |
OHC-Ph-NH-MCM-41 | +4.2 |
HO-Ph-NH-MCM-41 | -15.7 |
HOOC-Ph-NH-MCM-41 | -31.4 |
表2 NH2-MCM-41和四种药物载体的Zeta电位值
Table 2 Zeta potential of NH2-MCM-41 and four drug carriers
载体 | Zeta电位值/mV |
---|---|
NH2-MCM-41 | +29.2 |
Me-Ph-NH-MCM-41 | +8.1 |
OHC-Ph-NH-MCM-41 | +4.2 |
HO-Ph-NH-MCM-41 | -15.7 |
HOOC-Ph-NH-MCM-41 | -31.4 |
载药载体 | 吸附量/(mg/g) | 载药量/(mg/g) |
---|---|---|
RhB@NH2-MCM-41 | 16.88 | 16.60 |
RhB@Me-Ph-NH-MCM-41 | 13.11 | 12.94 |
RhB@OHC-Ph-NH-MCM-41 | 13.45 | 13.27 |
RhB@HO-Ph-NH-MCM-41 | 13.11 | 12.94 |
RhB@HOOC-Ph-NH-MCM-41 | 12.83 | 12.65 |
表3 NH2-MCM-41和四种载药载体的吸附量及载药量
Table 3 The adsorption capacity and drug loading capacity of four drug carriers and NH2-MCM-41
载药载体 | 吸附量/(mg/g) | 载药量/(mg/g) |
---|---|---|
RhB@NH2-MCM-41 | 16.88 | 16.60 |
RhB@Me-Ph-NH-MCM-41 | 13.11 | 12.94 |
RhB@OHC-Ph-NH-MCM-41 | 13.45 | 13.27 |
RhB@HO-Ph-NH-MCM-41 | 13.11 | 12.94 |
RhB@HOOC-Ph-NH-MCM-41 | 12.83 | 12.65 |
载药载体 | pH | 累积释药百分比/% |
---|---|---|
RhB@Me-Ph-NH-MCM-41 | 1.2 4.0 7.4 | 34.63 29.46 3.21 |
RhB@OHC-Ph-NH-MCM-41 | 1.2 4.0 7.4 | 52.03 42.63 3.12 |
RhB@HO-Ph-NH-MCM-41 | 1.2 4.0 7.4 | 43.94 35.45 3.06 |
RhB@HOOC-Ph-NH-MCM-41 | 1.2 4.0 7.4 | 57.87 47.54 3.09 |
表4 四种载药载体累积释药百分比
Table 4 Cumulative drug release percent of four drug carriers
载药载体 | pH | 累积释药百分比/% |
---|---|---|
RhB@Me-Ph-NH-MCM-41 | 1.2 4.0 7.4 | 34.63 29.46 3.21 |
RhB@OHC-Ph-NH-MCM-41 | 1.2 4.0 7.4 | 52.03 42.63 3.12 |
RhB@HO-Ph-NH-MCM-41 | 1.2 4.0 7.4 | 43.94 35.45 3.06 |
RhB@HOOC-Ph-NH-MCM-41 | 1.2 4.0 7.4 | 57.87 47.54 3.09 |
载药载体 | 拟合方程 | pH | 相关系数R2 |
---|---|---|---|
RhB@Me-Ph-NH-MCM-41 | 1.2 | 0.97413 | |
4.0 | 0.94715 | ||
7.4 | 0.96264 | ||
RhB@OHC-Ph-NH-MCM-41 | 1.2 | 0.92451 | |
4.0 | 0.930002 | ||
7.4 | 0.90728 | ||
RhB@HO-Ph-NH-MCM-41 | 1.2 | 0.94581 | |
4.0 | 0.94221 | ||
7.4 | 0.9177 | ||
RhB@HOOC-Ph-NH-MCM-41 | 1.2 | 0.92259 | |
4.0 | 0.93739 | ||
7.4 | 0.87306 |
表5 四种药物载体药物释放曲线拟合结果
Table 5 Results of drug release curve fitting of four drug carriers
载药载体 | 拟合方程 | pH | 相关系数R2 |
---|---|---|---|
RhB@Me-Ph-NH-MCM-41 | 1.2 | 0.97413 | |
4.0 | 0.94715 | ||
7.4 | 0.96264 | ||
RhB@OHC-Ph-NH-MCM-41 | 1.2 | 0.92451 | |
4.0 | 0.930002 | ||
7.4 | 0.90728 | ||
RhB@HO-Ph-NH-MCM-41 | 1.2 | 0.94581 | |
4.0 | 0.94221 | ||
7.4 | 0.9177 | ||
RhB@HOOC-Ph-NH-MCM-41 | 1.2 | 0.92259 | |
4.0 | 0.93739 | ||
7.4 | 0.87306 |
1 | Ortiz-Martínez K, Guerrero-Medina K J, Román F R, et al. Transition metal modified mesoporous silica adsorbents with zero microporosity for the adsorption of contaminants of emerging concern (CECs) from aqueous solutions[J]. Chemical Engineering Journal, 2015, 264: 152-164. |
2 | Snoussi Y, Bastide S, Abderrabba M, et al. Sonochemical synthesis of Fe3O4@NH2-mesoporous silica@Polypyrrole/Pd: a core/double shell nanocomposite for catalytic applications[J]. Ultrasonics Sonochemistry, 2018, 41: 551-561. |
3 | Zhu Y, Cheng Z, Xiang Q, et al. Rational design and synthesis of aldehyde-functionalized mesoporous SBA-15 for high-performance ammonia sensor[J]. Sensors & Actuators B Chemical, 2018, 256: 888-895. |
4 | Vallet‐Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angewandte Chemie, 2007, 46(40): 7548-7558. |
5 | Moritz M, Geszke-Moritz M. Mesoporous materials as multifunctional tools in biosciences: principles and applications[J]. Materials Science and Engineering: C, 2015, 49: 114-151. |
6 | Liu R, Zhao X, Wu T, et al. Tunable redox-responsive hybrid nanogated ensembles[J]. Journal of the American Chemical Society, 2008, 130(44): 14418-14419. |
7 | Descalzo A B, Martínez-Máñez R, Sancenon F, et al. The supramolecular chemistry of organic–inorganic hybrid materials[J]. Angewandte Chemie International Edition, 2006, 45(36): 5924-5948. |
8 | Wu S, Huang X, Du X. Glucose and pH-responsive controlled release of cargo from protein gated carbohydrate functionalized mesoporous silica nanocontainers[J]. Angewandte Chemie International Edition, 2013, 52(21): 5580-5584. |
9 | Nguyen T D, Liu Y, Saha S, et al. Design and optimization of molecular nanovalves based on redox switchable bistable rotaxanes[J]. Journal of the American Chemical Society, 2007, 129(3): 626-634. |
10 | 廖玉霞, 万晨露, 余艺, 等. 介孔二氧化硅纳米材料在缓释递药系统中的研究进展[J]. 中国新药杂志, 2019, 28(7): 804-809. |
Liao Y X, Wan C L, Yu Y, et al. Research progress of mesoporous silica nanomaterials in slow-release drug delivery system[J]. Chinese Journal of New Drugs, 2019, 28(7): 804-809. | |
11 | Vallet-Regi M, Rámila A, Del Real R P, et al. A new property of MCM-41: drug delivery system[J]. Chemistry of Materials, 2001, 13(2):308-311. |
12 | Wang W, Chen L, Xu L P, et al. A free-blockage controlled release system based on the hydrophobic/hydrophilic conversion of mesoporous silica nanopores[J]. Chemistry–A European Journal, 2015, 21(6): 2680-2685. |
13 | Li A, Zhang J, Xu Y, et al. Thermoresponsive copolymer/SiO2 nanoparticles with dual functions of thermally controlled drug release and simultaneous carrier decomposition[J]. Chemistry–A European Journal, 2014, 20(40): 12945-12953. |
14 | Chen L, Wang W, Su B, et al. A light-responsive release platform by controlling the wetting behavior of hydrophobic surface[J]. ACS Nano, 2014, 8(1): 744-751. |
15 | Yang C, Guo W, Cui L, et al. Fe3O4@mSiO2 core–shell nanocomposite capped with disulfide gatekeepers for enzyme-sensitive controlled release of anti-cancer drugs[J]. Journal of Materials Chemistry B, 2015, 3(6): 1010-1019. |
16 | Slowing I I, Vivero-Escoto J L, Wu C W, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers[J]. Advanced Drug Delivery Reviews, 2008, 60(11): 1278-1288. |
17 | 郑静. 基于磁性有序介孔碳纳米球的靶向药物缓释系统[D]. 太原: 太原理工大学, 2018. |
Zheng J. Targeted drug sustained-release system based on magnetic ordered mesoporous carbon nanospheres[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
18 | Wang H, Cao G, Gai Z, et al. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles[J]. Nanoscale, 2015, 7(17): 7885-7895. |
19 | Wang H, Yi J, Mukherjee S, et al. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release[J]. Nanoscale, 2014, 6(21): 13001-13011. |
20 | Ferrari M. Cancer nanotechnology: opportunities and challenges[J]. Nature Reviews Cancer, 2005, 5(3): 161-171. |
21 | Gui W, Wang W, Jiao X, et al. pH-response controlled release system based on hollow mesoporous silica nanoparticles[J]. Scientia Sinica Chimica, 2015, 45(7): 703-709. |
22 | Zhao J, He Z, Li B, et al. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles[J]. Materials Science and Engineering, 2017, 73: 1-7. |
23 | Taba P, Mustafa R D P, Ramang L M, et al. Adsorption of Pb2+ on thiol-functionalized mesoporous silica, SH-MCM-48[J]. Journal of Physics: Conference Series, 2018, 979(1): 012058. |
24 | Barczak M, Wierzbicka M, Borowski P. Sorption of diclofenac onto functionalized mesoporous silicas: experimental and theoretical investigations[J]. Microporous and Mesoporous Materials, 2018, 264: 254-264. |
25 | Yuan N, Liu Z W, Wang L Y, et al. Rattle-type diamine-functionalized mesoporous silica sphere for carbon dioxide adsorption[J]. Journal of Nano Research, 2018, 53: 13-21. |
26 | Yue M B, Sun L B, Cao Y, et al. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group[J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3): 74-81. |
27 | Goscianska J, Olejnik A, Nowak I. APTES-functionalized mesoporous silica as a vehicle for antipyrine-adsorption and release studies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 187-196. |
28 | Leal O, Bolívar C, Ovalles C, et al. Reversible adsorption of carbon dioxide on amine surface-bonded silica gel[J]. Inorganica Chimica Acta, 1995, 240(1/2): 183-189. |
29 | Hicks J C, Drese J H, Fauth D J, et al. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly[J]. Journal of the American Chemical Society, 2008, 130(10): 2902-2903. |
30 | Zhang R Y, Lin H K. Carbon nanomaterials as drug carriers: real time drug release investigation[J]. Mat. Sci. En. C, 2012, 32(5): 1247-1252. |
31 | 尚渤程, 黎一苇. 人体常见的pH值[J]. 生物学教学, 2009, 34(12): 66. |
Shang B C, Li Y W. Common body pH[J]. Biology Teaching, 2009, 34(12): 66. | |
32 | Angelos S, Khashab N M, Yang Y W, et al. pH clock-operated mechanized nanoparticles[J]. Journal of the American Chemical Society, 2009, 131(36): 12912-12914. |
33 | 仝高民, 张桂枝. 影响有机胺碱性强弱的因素[J]. 雁北师范学院学报, 2002, 18(5): 75-79. |
Tong G M, Zhang G Z. Factors affecting the basicity of organic amines[J]. Journal of Yanbei Normal University, 2002, 18(5): 75-79. | |
34 | 林粤顺, 周红军, 周新华, 等. pH响应性PAA/毒死蜱/氨基化介孔硅缓释体系的制备与性能[J]. 化工学报, 2016, 67(10): 4500-4507. |
Lin Y S, Zhou H J, Zhou X H, et al. Preparation and performance of pH-responsive PAA / chlorpyrifos / aminated mesoporous silicon sustained release system[J]. CIESC Journal, 2016, 67(10): 4500-4507. | |
35 | 林粤顺, 周新华, 周红军, 等. 共缩聚法制备氨基化介孔硅及其对毒死蜱的缓释性能[J]. 农药学学报, 2016, 18(5): 644-650. |
Lin Y S, Zhou X H, Zhou H J, et al. Preparation of aminated mesoporous silicon by copolycondensation and its slow-release properties to chlorpyrifos[J]. Chinese Journal of Pesticide Science, 2016, 18(5): 644-650. | |
36 | Dash S, Murthy P N, Nath L, et al. Kinetic modeling on drug release from controlled drug delivery systems[J]. Acta Poloniae Pharmaceutica, 2010, 67(3): 217-223. |
37 | Zeng W, Qian X F, Yin J, et al. The drug delivery system of MCM-41 materials via co-condensation synthesis[J]. Materials Chemistry & Physics, 2006, 97(2): 437-441. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[10] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[11] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[12] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[13] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[14] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[15] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||