化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4836-4846.DOI: 10.11949/0438-1157.20191307
• 材料化学工程与纳米技术 • 上一篇
胡兵兵(),杨束,李彦,徐川岚,陈鹏,于晶晶,余丹梅(),陈昌国
收稿日期:
2019-11-01
修回日期:
2020-03-02
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
余丹梅
作者简介:
胡兵兵(1993—),男,博士研究生,基金资助:
Bingbing HU(),Shu YANG,Yan LI,Chuanlan XU,Peng CHEN,Jingjing YU,Danmei YU(),Changguo CHEN
Received:
2019-11-01
Revised:
2020-03-02
Online:
2020-10-05
Published:
2020-10-05
Contact:
Danmei YU
摘要:
近年来,越来越多的研究致力于开发新型、超高能量密度、高法拉第反应活性的电极材料,尤其将其应用于新一代超级电容器储能系统。通过水热法直接在柔性基质碳布上生长海胆状V2O5纳米球和十四面体Fe2O3纳米盒子。V2O5微观结构和储能性能可通过改变水热时间进行调控。海胆状V2O5纳米球正极材料具有最高比容量535 F·g-1。以十四面体Fe2O3纳米盒子作为负极材料组装的新型结构V2O5-CC//Fe2O3-CC柔性超级电容器,在功率密度为699.49 W·kg-1时,能量密度可达46.06 W·h·kg-1。而且具有良好的机械柔韧性,在180°弯曲循环测试5000次,比容量保持率仍高达83.4%。研究为开发下一代超高能量密度、柔性电子器件提供了一种通用而有效的策略。
中图分类号:
胡兵兵, 杨束, 李彦, 徐川岚, 陈鹏, 于晶晶, 余丹梅, 陈昌国. 免黏结剂V2O5和Fe2O3柔性电极的构建及在超级电容器中的应用[J]. 化工学报, 2020, 71(10): 4836-4846.
Bingbing HU, Shu YANG, Yan LI, Chuanlan XU, Peng CHEN, Jingjing YU, Danmei YU, Changguo CHEN. Construction of free binder V2O5 and Fe2O3 flexible electrode and its application in supercapacitor[J]. CIESC Journal, 2020, 71(10): 4836-4846.
图6 不同水热反应时间的V2O5-CC材料的CV曲线对比图(a);GCD曲线对比图(b);不同电流密度下的比电容对比图(c)和电化学阻抗谱对比图(d);V2O5-6h材料在不同扫描速率下的CV曲线图(e)和在不同电流密度下的GCD图(f)
Fig.6 CV curves (a), GCD curves (b), specific capacitances at different current densities (c) and electrochemical impedance spectra (d) of V2O5-CC materials with different reaction time. CV curves at various scan rates (e) and GCD curves at various current densities (f) of V2O5-6h materials
图7 Fe2O3-CC材料在不同扫描速率下的CV曲线(a)和在不同电流密度下的GCD曲线(b)
Fig.7 CV curves at various scan rates (a) and GCD curves at various current densities (b) of Fe2O3-CC materials
图8 V2O5-CC//Fe2O3-CC非对称超级电容器在不同扫速下CV曲线图(a);不同电流密度GCD图(b);比电容对电流密度的变化图(c);功率密度-能量密度图(d);不同弯曲角度CV曲线图(e)和循环稳定性图(f)
Fig.8 CV curves (a), GCD curves (b), specific capacitances at different current densities (c), power density vs energy density (d), CV curves at different bending angles (e) and cycling stability of V2O5-CC//Fe2O3-CC ASCs
1 | Islam M S, Fisher C A. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties[J]. Chemical Society Reviews, 2014, 43(1): 185-204. |
2 | Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176): 1210-1211. |
3 | Li Q, Xu Y, Zheng S, et al. Recent progress in some amorphous materials for supercapacitors[J]. Small, 2018, 14(28): e1800426. |
4 | Peng H, Yao B, Wei X, et al. Pore and heteroatom engineered carbon foams for supercapacitors[J]. Advanced Energy Materials, 2019, 9(19): 1803665. |
5 | 张亚婷, 张凯博, 贾凯丽, 等. 柔性自支撑PDDA-Si/G纳米复合薄膜的制备及储锂性能[J]. 化工学报, 2019, 70(3): 1144-1151. |
Zhang Y T, Zhang K B, Jia K L, et al. Preparation and lithium storage properties of flexible self-standing PDDA-Si/G nanocomposite film [J]. CIESC Journal, 2019, 70(3): 1144-1151. | |
6 | Wang Q, Zhang Y, Jiang H, et al. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: a potential electrode material for flexible all solid-state asymmetric supercapacitor[J]. Chemical Engineering Journal, 2019, 362: 818-829. |
7 | Zuo W, Li R, Zhou C, et al. Battery-supercapacitor hybrid devices: recent progress and future prospects[J]. Advance Science, 2017, 4(7): 1600539. |
8 | Kim H S, Cook J B, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x[J]. Nature Materials, 2017, 16(4), 454-460. |
9 | Zhang Y, Wang C, Jiang H, et al. Cobalt-nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid supercapacitors[J]. Chemical Engineering Journal, 2019, 375: 121938. |
10 | 禹兴海, 罗齐良, 潘剑, 等. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600. |
Yu X H, Luo Q L, Pan J, et al. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. CIESC Journal, 2019, 70(9): 3590-3600. | |
11 | Shi P, Li L, Hua L, et al. Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor[J]. ACS Nano, 2017, 11 (1): 444-452. |
12 | Wang J, Zhang X, Wei Q, et al. 3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors[J]. Nano Energy, 2016, 19: 222-233. |
13 | Chen C, Wang S, Luo X, et al. Reduced ZnCo2O4@NiMoO4•H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors[J]. Journal of Power Sources, 2019, 409: 112-122. |
14 | Hosseini H, Shahrokhian S. Advanced binder-free electrode based on core–shell nanostructures of mesoporous Co3V2O8-Ni3V2O8 thin layers@porous carbon nanofibers for high-performance and flexible all-solid-state supercapacitors[J]. Chemical Engineering Journal, 2018, 341: 10-26. |
15 | Chen C, Yan D, Luo X, et al. Construction of core-shell NiMoO4@Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors[J]. ACS Appllied Material & Interfaces, 2018, 10(5): 4662-4671. |
16 | Costentin C, Porter T R, Saveant J M. How do pseudocapacitors store energy? Theoretical analysis and experimental illustration [J]. ACS Appllied Material & Interfaces, 2017, 9(10): 8649-8658. |
17 | Yang J, Liu W, Niu H, et al. Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots [J]. Nano Research, 2018, 11(9): 4744-4758. |
18 | Wei X, Zhang Y, He H, et al. Carbon-incorporated NiO/Co3O4 concave surface microcubes derived from a MOF precursor for overall water splitting [J]. Chemical Communication, 2019, 55(46): 6515-6518. |
19 | Hu B B, Xiang Q, Cen Y, et al. In situ constructing flexible V2O5@GO composite thin film electrode for superior electrochemical energy storage[J]. Journal of the Electrochemical Society, 2018, 165(16): A3738-A3747. |
20 | Yang Y, Tang Y, Fang G, et al. Li+ intercalated V2O5•nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode[J]. Energy & Environmental Science, 2018, 11(11): 3157-3162. |
21 | Zhang N, Jia M, Dong Y, et al. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries[J]. Advanced Functional Materials, 2019, 29(10): 1807331. |
22 | Ma J, Guo X, Yan Y, et al. FeOx-based materials for electrochemical energy storage[J]. Advanced Science, 2018, 5(6): 1700986. |
23 | Zeng Y, Yu M, Meng Y, et al. Iron-based supercapacitor electrodes: advances and challenges[J]. Advanced Energy Materials, 2016, 6(24): 1601053. |
24 | Wang J G, Liu H, Liu H, et al. Interfacial constructing flexible V2O5@polypyrrole core-shell nanowire membrane with superior supercapacitive performance[J]. ACS Appllied Material & Interfaces, 2018, 10(22): 18816-18823. |
25 | Xia H, Hong C, Li B, et al. Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors[J]. Advanced Functional Materials, 2015, 25(4): 627-635. |
26 | Jiang H, Cai X, Qian Y, et al. V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(45): 23727-23736. |
27 | Liu H, Tang Y, Wang C, et al. A lyotropic liquid-crystal-based assembly avenue toward highly oriented vanadium pentoxide/graphene films for flexible energy storage[J]. Advanced Functional Materials, 2017, 27(12): 1606269. |
28 | Li H, Wei C, Wang L, et al. Hierarchical vanadium oxide microspheres forming from hyperbranched nanoribbons as remarkably high performance electrode materials for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(45): 22892-22901. |
29 | Lee M, Balasingam S K, Hu Y J, et al. One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage[J]. Scientific Reports, 2015, 5: 8151. |
30 | Li Y, Xu J, Feng T, et al. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors[J]. Advanced Functional Materials, 2017, 27: 1606728. |
31 | Fang K, Chen J, Zhou X, et al. Decorating biomass-derived porous carbon with Fe2O3 ultrathin film for high-performance supercapacitors[J]. Electrochimica Acta, 2018, 261: 198-205. |
32 | Wang H, Xu C, Chen Y, et al. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density[J]. Energy Storage Materials2017, 8: 127-133. |
33 | Wang L, Yang H, Liu X, et al. Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors[J]. Angewandte Chemie-International Edition, 2018, 56 (4): 1105-1110. |
34 | Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(6): 16070. |
35 | Chen Y, Zhang Z, Huang, Z, et al. Effects of oxygen-containing functional groups on the supercapacitor performance of incompletely reduced graphene oxides[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7186-7194. |
36 | Xing L L, Zhao G G, Huang K J, et al. A yolk-shell V2O5 structure assembled from ultrathin nanosheets and coralline-shaped carbon as advanced electrodes for a high-performance asymmetric supercapacitor[J]. Dalton Transactions, 2018, 47(7): 2256-2265. |
37 | Qian T, Xu N, Zhou J, et al. Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(2): 488-493. |
38 | Liu Q, Li Z F, Liu Y, et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries[J]. Nature Communication, 2015, 6(1): 6127. |
39 | Gu T, Wei B. High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO2/CNT and Fe2O3/CNT macrofilms[J]. Journal of Materials Chemistry A, 2016, 4(31): 12289-12295. |
40 | Serrapede M, Rafique A, Fontana, Met al. Fiber-shaped asymmetric supercapacitor exploiting rGO/Fe2O3 aerogel and electrodeposited MnOx nanosheets on carbon fibers[J]. Carbon, 2019, 144: 91-100. |
41 | Lin Z, Yan X, Lang J, et al. Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods[J]. Journal of Power Sources, 2015, 279: 358-364. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[6] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[9] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[10] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[13] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[14] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[15] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||