化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1791-1801.DOI: 10.11949/0438-1157.20190997
收稿日期:
2019-09-03
修回日期:
2019-10-31
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
张兰河
作者简介:
贾艳萍(1973—),女,博士,教授,基金资助:
Yanping JIA1(),Zhen ZHANG1,Zewei TONG2,Wei WANG1,Lanhe ZHANG1()
Received:
2019-09-03
Revised:
2019-10-31
Online:
2020-04-05
Published:
2020-04-05
Contact:
Lanhe ZHANG
摘要:
针对印染废水色度高、成分复杂、难降解等问题,利用铁碳微电解工艺处理该废水,提高其可生化性和处理效率。考察初始pH、铁投加量、铁/碳质量比及反应时间对工艺的影响,通过扫描电子显微镜(SEM)、红外光谱、X射线能谱(EDS)及X射线衍射(XRD)分析反应前后铁碳结构的变化,采用Zeta电位和紫外可见光谱等对比废水处理前后有机物成分的变化,探究印染废水的降解机理。结果表明:在初始pH为4、铁投加量为80 g/L、铁/碳质量比为0.8及反应时间为90 min时,COD、浊度、色度、氨氮和TOC去除率分别为75.48%、87.88%、75.34%、92.01%和81.09%。反应前铁碳反应器的成分以Fe、C为主,活性炭的孔隙结构发达,反应后铁碳表面附着Al、K等其他金属物质和铁的氢氧化物絮体。铁碳微电解工艺可降解酯、醇类有机物为小分子物质,提高废水可生化性。
中图分类号:
贾艳萍, 张真, 佟泽为, 王嵬, 张兰河. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801.
Yanping JIA, Zhen ZHANG, Zewei TONG, Wei WANG, Lanhe ZHANG. Study on efficiency and mechanism of iron-carbon microelectrolysis treatment of dyeing wastewater[J]. CIESC Journal, 2020, 71(4): 1791-1801.
1 | 邹骏华. 印染废水为主的污水处理厂锑污染特征及吸附处理工艺研究[D]. 杭州: 浙江大学, 2017. |
Zou J H. Study on pollution characteristics and adsorption process in dyeing wastewater treatment plant[D]. Hangzhou: Zhejiang University, 2017. | |
2 | Alalewi A, Jiang C. Bacterial influence on textile wastewater decolorization[J]. Journal of Environmental Protection, 2012, 3(28): 889-903. |
3 | 王建坤, 郭晶, 张昊, 等. 阳离子淀粉染料吸附材料的制备及表征[J]. 化工学报, 2017, 68(5): 2112-2121. |
Wang J K, Guo J, Zhang H, et al. Synthesis and characterization of cationic starch dye adsorbing material[J]. CIESC Journal, 2017, 68(5): 2112-2121. | |
4 | 游东辉, 程治良, 李敢, 等. 新型酞菁催化剂的制备及降解染料性能[J]. 化工学报, 2018, 69(12): 5090-5099. |
You D H, Cheng Z L, Li G, et al. Preparation and catalytic degradation property research of novel phthalocyanine[J]. CIESC Journal, 2018, 69(12): 5090-5099. | |
5 | Ning X A, Wen W B, Zhang Y P. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment[J]. Journal of Environmental Management, 2015, 161(15): 181-187. |
6 | 张锐, 李敏, 周天旭, 等. 新型温敏超滤膜处理印染废水的研究[J]. 化工学报, 2018, 69(11): 4910-4917. |
Zhang R, Li M, Zhou T X, et al. Treatment of printing and dyeing wastewater with novel temperature-responsive ultrafiltration membrane[J]. CIESC Journal, 2018, 69(11): 4910-4917. | |
7 | Bae W, Han D, Kim E, et al. Enhanced bioremoval of refractory compounds from dyeing wastewater using optimized sequential anaerobic/aerobic process[J]. International Journal of Environmental Science and Technology, 2016, 13(7): 1675-1684. |
8 | 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. |
Ren N Q, Zhou X J, Guo W Q, et al. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94. | |
9 | 冯勇, 吴德礼, 马鲁铭. 结构态亚铁羟基化合物还原预处理印染废水的效果和机制[J]. 化工学报, 2011, 62(7): 2033-2041. |
Feng Y, Wu D L, Ma L M. Reductive pretreatment of printing and dyeing wastewater by ferrous hydroxy complex[J]. CIESC Journal, 2011, 62(7): 2033-2041. | |
10 | 徐昆. 通过优化订单调度提高棉针织印染废水回用效率研究[D]. 北京: 清华大学, 2016. |
Xu K. Study on high reuse efficiency of cotton knitting dyeing wastewater by optimization order scheduling[D]. Beijing: Tsinghua University, 2016. | |
11 | 张庆云, 谢学辉, 柳建设. 微生物共代谢处理印染废水研究进展[J]. 化工进展, 2017, 36(9): 3492-3501. |
Zhang Q Y, Xie X H, Liu J S. Research overview of microbial co-metabolism on printing and dyeing wastewater treatment[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3492-3501. | |
12 | 谢学辉, 朱玲玉, 刘娜, 等. 印染废水处理功能菌研究进展[J]. 化工进展, 2015, 34(2): 554-560. |
Xie X H, Zhu L Y, Liu N, et al. Progress of functional bacteria in printing and dyeing wastewater: biological treatment[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 554-560. | |
13 | 俸志荣, 焦纬洲, 刘有智, 等. 铁碳微电解处理含硝基苯废水[J]. 化工学报, 2015, 66(3): 1150-1155. |
Feng Z R, Jiao W Z, Liu Y Z, et al. Treatment of nitrobenzene-containing wastewater by iron-carbon micro-electrolysis[J]. CIESC Journal, 2015, 66(3): 1150-1155. | |
14 | 王毅博, 冯民权, 刘永红, 等. 铁碳微电解技术在难治理废水中的研究进展[J]. 化工进展, 2018, 37(8): 3188-3196. |
Wang Y B, Feng M Q, Liu Y H, et al. Recent advances on iron-carbon micro-electrolysis technology for refractory wastewater[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3188-3196. | |
15 | 宋忠忠. 新型铁碳微电解材料的研发及应用研究[D]. 兰州: 兰州交通大学, 2018. |
Song Z Z. Research and application of a new type of iron carbon micro electrolysis material[D]. Lanzhou: Lanzhou Jiaotong University, 2018. | |
16 | 罗剑非. 铁碳微电解预处理DMAC废水实验研究[D]. 武汉: 武汉科技大学, 2018. |
Luo J F. Iron carbon inner electrolysis process experimental study of DMAC wastewater treatment[D]. Wuhan: Wuhan University of Science and Technology, 2018. | |
17 | Stieber M, Putschew A, Jekel M. Treatment of pharmaceuticals and diagnostic agents using zero-valent iron-kinetic studies and assessment of transformation products assay[J]. Environmental Science & Technology, 2011, 45(11): 4944-4950. |
18 | 曾超. 铁碳微电解-混凝深度处理印染废水作用机制研究[D]. 上海: 东华大学, 2015. |
Zeng C. Research on mechanism of advanced treatment of dyeing wastewater via Fe-C micro-electrosis-coagulation[D]. Shanghai: Donghua University, 2015. | |
19 | Segura Y, Martínez F, Melero J A. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron[J]. Applied Catalysis B: Environmental, 2013, 136: 64-69. |
20 | Lai B, Zhou Y X, Qin H K, et al. Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by micro-electrolysis[J]. Chemical Engineering Journal, 2010, 179(1): 1-7. |
21 | Vijayalakshmi G, Bhola R G, Rao Y S, et al. Treatment of pyridine-bearing wastewater by nano zero-valent iron supported on activated carbon derived from agricultural waste[J]. Desalination and Water Treatment, 2015, 57(14): 1-11. |
22 | Azzam A M, EI-Wakeel S T, Mostafa B B, et al. Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2196-2206. |
23 | 王悦. 铁碳微电解系统的性能及优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. |
Wang Y. Research and optimization of performance of iron-carbon microelectrolysis[D]. Harbin: Harbin Engineering University, 2017. | |
24 | 余丽胜, 焦纬洲, 刘有智, 等. 超声强化铁碳微电解-Fenton法降解硝基苯废水[J]. 化工学报, 2017, 68(1): 297-304. |
Yu L S, Jiao W Z, Liu Y Z, et al. Degradation of nitrobenzene wastewater under Fe0/GAC-Fenton enhanced by ultrasound[J]. CIESC Journal, 2017, 68(1): 297-304. | |
25 | 贾艳萍, 张真, 毕朕豪, 等. 铁碳微电解处理印染废水的效能及生物毒性变化[J]. 化工进展, 2020, 39(2): 790-797. |
Jia Y P, Zhang Z, Bi Z H, et al. Efficiency and biological toxicity of iron-carbon microelectrolysis in the treatment of dyeing wastewater[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 790-797. | |
26 | Ying D W, Peng J, Xu X Y, et al. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: a comparative study on a novel sequencing batch reactor based on zero valent iron[J]. Hazard. Mater., 2012, 229/230(5): 426-433. |
27 | 张龙龙. 新型陶粒基铁碳微电解-UAF-UBAF组合工艺处理环丙沙星废水研究[D]. 济南: 山东大学, 2018. |
Zhang L L. Application of the combined Fe-C micro-electrolysis and anaerobic-aerobic bio-filter with novel ceramics for ciprofloxacin wastewater treatment[D]. Jinan: Shandong University, 2018. | |
28 | Xu X Y, Cheng Y, Zhang T T, et al. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation[J]. Chemosphere, 2016, 152: 23-30. |
29 | 郑敏. 铁碳微电解对垃圾渗滤液生化出水水质改善研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
Zheng M. Study on improvement of biochemical effluent quality of landfill leachate by iron-carbon micro-electrolysis[D]. Harbin: Harbin Institute of Technology, 2017. | |
30 | 罗发生. 铁碳微电解絮凝-耦合法处理铅锌冶炼废水[D]. 昆明: 昆明理工大学, 2011. |
Luo F S. The treatment of lead and zinc smelting wastewater by Fe-C micro-electrolysis and flocculation[D]. Kunming: Kunming University of Science and Technology, 2011. | |
31 | 杨怡. 三维电极耦合铁碳微电解处理高浓度难降解有机废水[D]. 南昌: 南昌大学, 2017. |
Yang Y. The research on the treatment of concentrated and hard-decompose organic wastewater by three-dimensional electrode coupling iron-carbon micro electrolysis[D]. Nanchang: Nanchang University, 2017. | |
32 | 张颖. FeⅡEDTA络合吸收脱硝液的铁碳微电解再生性能与机理[D]. 湘潭: 湘潭大学, 2017. |
Zhang Y. Performance and mechanism of FeⅡEDTA denitrification solution regeneration by iron-active carbon microelectrolysis[D]. Xiangtan: Xiangtan University, 2017. | |
33 | Wang Y, Han K T, Wu H, et al. Removal of phosphorus from wastewaters using ferrous salts a pilot scale membrane bioreactor study[J]. Water Research, 2014, 57(15): 140-150. |
34 | 王喜全. 微电解-Fenton氧化法处理染料废水及其降解历程的研究[D]. 沈阳: 东北大学, 2011. |
Wang X Q. Study on treatment of dye wastewater by combined process using micro-electrolysis and Fenton oxidation and the investigation of the reaction mechanism[D]. Shenyang: Northeastern University, 2011. | |
35 | 范功端, 林修咏, 王书敏, 等. 生物滞留系统间隙水DOM三维荧光光谱特征分析[J]. 光谱学与光谱分析, 2018, 38(4): 1139-1145. |
Fan G D, Lin X Y, Wang S M, et al. Compositional characteristics of interstitial water dissolved organic matter in bioretention systems with different filling[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1139-1145. | |
36 | 张晓燕. 基于三维荧光光谱的饮用水有机物定性判别方法研究[D]. 杭州: 浙江大学, 2018. |
Zhang X Y. Research on the qualitative determination of drinking water organic contaminant based on three-dimensional fluorescence spectroscopy[D]. Hangzhou: Zhejiang University, 2018. | |
37 | Swietlik J, Dabrowska A, Raczykstanistawiak U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research, 2004, 38(3): 547-558. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[6] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[7] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[8] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[9] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[10] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[11] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[12] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[13] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[14] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[15] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||