化工学报 ›› 2020, Vol. 71 ›› Issue (5): 1976-1985.DOI: 10.11949/0438-1157.20191438
收稿日期:
2019-11-26
修回日期:
2020-02-06
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
汪双凤
作者简介:
黎方菊(1995—),女,硕士研究生,基金资助:
Fangju LI(),Wei WU,Shuangfeng WANG()
Received:
2019-11-26
Revised:
2020-02-06
Online:
2020-05-05
Published:
2020-05-05
Contact:
Shuangfeng WANG
摘要:
采用三维孔隙网络模型计算了不同沟槽参数下气体扩散层(GDL)的液态水突破压力、毛细压力分布、气体扩散率和液相相对渗透率随饱和度变化,并从孔隙尺度角度探究了沟槽的作用机制。研究结果表明:沟槽改变了GDL的毛细压力分布,提供了液态水直接传输路径并优化了GDL内氧气和液态水的分布,从而提高了氧气有效扩散率。沟槽位置对氧气传输有明显影响,对液相传输的影响取决于是否形成贯穿GDL的传输路径;沟槽加深,氧气和液态水传输性能增强,沟槽穿透GDL时传输性能达到最佳;沟槽变宽,液相传输性能增强,氧气传输性能在低饱和度范围内先增强后减弱。综合各因素,给出了氧气和液态水传输性能最优时的沟槽参数。
中图分类号:
黎方菊, 吴伟, 汪双凤. PEMFC带沟槽气体扩散层内传输特性孔隙网络模拟[J]. 化工学报, 2020, 71(5): 1976-1985.
Fangju LI, Wei WU, Shuangfeng WANG. Pore network simulation of transport properties in grooved gas diffusion layer of PEMFC[J]. CIESC Journal, 2020, 71(5): 1976-1985.
参数 | μ/μm | σ/μm | a/μm | b/μm | |
---|---|---|---|---|---|
孔隙分布 | 10 | 1 | 8 | 12 | |
喉道分布 | 展向x×y | 5 | 1 | 3 | 7 |
纵向z | 6 | 1 | 4 | 8 |
表1 孔隙和喉道尺寸分布
Table 1 Pore and throat size distribution
参数 | μ/μm | σ/μm | a/μm | b/μm | |
---|---|---|---|---|---|
孔隙分布 | 10 | 1 | 8 | 12 | |
喉道分布 | 展向x×y | 5 | 1 | 3 | 7 |
纵向z | 6 | 1 | 4 | 8 |
案例 | GDL厚度/μm | 沟槽个数 | 沟槽深度/μm | 沟槽宽度/μm | 孔隙率/% | 示意图 |
---|---|---|---|---|---|---|
案例1 | 250 | 0 | — | — | 63.7 | |
案例2 | 250 | 1 | 100 | 150 | 65.0 | |
案例3 | 250 | 1 | 100 | 150 | 65.0 | |
案例4 | 150 | 0 | — | — | 63.7 | |
案例5 | 250 | 2 | 100 | 150 | 66.4 | |
案例6 | 250 | 2 | 100 | 150 | 66.4 |
表2 不同沟槽位置的GDL参数
Table 2 Parameters of GDL with different groove positions
案例 | GDL厚度/μm | 沟槽个数 | 沟槽深度/μm | 沟槽宽度/μm | 孔隙率/% | 示意图 |
---|---|---|---|---|---|---|
案例1 | 250 | 0 | — | — | 63.7 | |
案例2 | 250 | 1 | 100 | 150 | 65.0 | |
案例3 | 250 | 1 | 100 | 150 | 65.0 | |
案例4 | 150 | 0 | — | — | 63.7 | |
案例5 | 250 | 2 | 100 | 150 | 66.4 | |
案例6 | 250 | 2 | 100 | 150 | 66.4 |
图10 不同沟槽深度的GDL氧气有效扩散率和液相相对渗透率随液相饱和度变化曲线
Fig.10 Oxygen effective diffusivity and liquid relative permeability as function of water saturation in GDL with different groove depths
20 | Mukherjee P P, Kang Q J, Wang C Y. Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells-progress and perspective[J]. Energy & Environmental Science, 2011, 4(2): 346-369. |
21 | Wilkinson D, Willemsen J F. Invasion percolation: a new form of percolation theory[J]. Journal of Physics A (Mathematical and General), 1983, 16(14): 3365-3376. |
22 | Sinha P K, Wang C Y. Liquid water transport in a mixed-wet gas diffusion layer of a polymer electrolyte fuel cell[J]. Chemical Engineering Science, 2008, 63(4): 1081-1091. |
23 | El Hannach M, Pauchet J, Prat M. Pore network modeling: Application to multiphase transport inside the cathode catalyst layer of proton exchange membrane fuel cell[J]. Electrochimica Acta, 2011, 56(28): 10796-10808. |
24 | Wu R, Zhu X, Liao Q, et al. Liquid and oxygen transport in defective bilayer gas diffusion material of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(10): 4067-4078. |
25 | Wu R, Liao Q, Zhu X, et al. Liquid and oxygen transport through bilayer gas diffusion materials of proton exchange membrane fuel cells[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6363-6373. |
26 | Kuttanikkad S P, Prat M, Pauchet J. Pore-network simulations of two-phase flow in a thin porous layer of mixed wettability: application to water transport in gas diffusion layers of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2011, 196(3): 1145-1155. |
27 | Ramos-Alvarado B, Sole J D, Hernandez-Guerrero A, et al. Experimental characterization of the water transport properties of PEM fuel cells diffusion media[J]. Journal of Power Sources, 2012, 218: 221-232. |
28 | Gostick J T, Ioannidis M A, Fowler M W, et al. Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2007, 173(1): 277-290. |
29 | Wang Y L, Wang S X, Liu S C, et al. Three-dimensional simulation of a PEM fuel cell with experimentally measured through-plane gas effective diffusivity considering Knudsen diffusion and the liquid water effect in porous electrodes[J]. Electrochimica Acta, 2019, 318: 770-782. |
30 | Penman H L. Gas and vapour movements in the soil (Ⅰ): The diffusion of vapours through porous solids[J]. Journal of Agricultural Science, 1940, 30(3): 437-462. |
31 | Shou D H, Fan J T, Ding F. Effective diffusivity of gas diffusion layer in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2013, 225: 179-186. |
1 | Omrani R, Shabani B. Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(7): 3834-3860. |
2 | Lee K J, Kang J H, Nam J H. Liquid water distribution in hydrophobic gas-diffusion layers with interconnect rib geometry: an invasion-percolation pore network analysis[J]. International Journal of Hydrogen Energy, 2014, 39(12): 6646-6656. |
3 | Liu H, Hinebaugh J, Chevalier S, et al. Modeling the effect of fibre surface morphology on liquid water transport in polymer electrolyte membrane fuel cell gas diffusion layers[J]. Transport in Porous Media, 2018, 121(2): 437-458. |
4 | 胡桂林, 樊建人, 岑可法. 质子交换膜燃料电池动态过程的数值模拟[J]. 化工学报, 2006, 57(11): 2693-2698. |
Hu G L, Fan J R, Cen K F. Numerical simulation of dynamic behavior of proton exchange membrane fuel cell[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(11): 2693-2698. | |
5 | 王学科, 王树博, 潘元, 等. 阳极进气湿度对质子交换膜水含量及电流密度分布影响[J]. 化工学报, 2015, 66: 342-348. |
Wang X K, Wang S B, Pan Y, et al. Effect of anode inlet gas humidification on PEM water contents and current density distribution[J]. CIESC Journal, 2015, 66: 342-348. | |
6 | Aghighi M, Hoeh M A, Lehnert W, et al. Simulation of a full fuel cell membrane electrode assembly using pore network modeling[J]. Journal of the Electrochemical Society, 2016, 163(5): F384-F392. |
7 | Fazeli M, Hinebaugh J, Fishman Z, et al. Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers[J]. Journal of Power Sources, 2016, 335: 162-171. |
8 | Omrani R, Shabani B. Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: a review[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28515-28536. |
9 | Dujc J, Forner-Cuenca A, Marmet P, et al. Modeling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(0210012). |
10 | Gerteisen D, Heilmann T, Ziegler C. Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell[J]. Journal of Power Sources, 2008, 177(2): 348-354. |
11 | Hauβsmann J, Markoetter H, Alink R, et al. Synchrotron radiography and tomography of water transport in perforated gas diffusion media[J]. Journal of Power Sources, 2013, 239: 611-622. |
12 | Wang X K, Chen S T, Fan Z H, et al. Laser-perforated gas diffusion layer for promoting liquid water transport in a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29995-30003. |
13 | Fang W Z, Tang Y Q, Chen L, et al. Influences of the perforation on effective transport properties of gas diffusion layers[J]. International Journal of Heat and Mass Transfer, 2018, 126(A): 243-255. |
14 | Niu Z Q, Wu J T, Bao Z M, et al. Two-phase flow and oxygen transport in the perforated gas diffusion layer of proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2019, 139: 58-68. |
15 | Nishida K, Murakami T, Tsushima S, et al. Measurement of liquid water content in cathode gas diffusion electrode of polymer electrolyte fuel cell[J]. Journal of Power Sources, 2010, 195(11): 3365-3373. |
16 | Lee K J, Kang J H, Nam J H, et al. Steady liquid water saturation distribution in hydrophobic gas-diffusion layers with engineered pore paths: an invasion-percolation pore-network analysis[J]. Journal of Power Sources, 2010, 195(11): 3508-3512. |
17 | 程树. PEMFC气体扩散层干燥的孔隙网络模拟及实验研究[D]. 上海: 上海理工大学, 2015. |
Cheng S. Pore network model and similarity experiment for drying of gas diffusion layer of PEMFC[D]. Shanghai: University of Shanghai for Science and Technology, 2015. | |
18 | Fazeli M, Hinebaugh J, Bazylak A. Investigating inlet condition effects on PEMFC GDL liquid water transport through pore network modeling[J]. Journal of the Electrochemical Society, 2015, 162(7): F661-F668. |
19 | Zhan N H, Wu W, Wang S F. Pore network modeling of liquid water and oxygen transport through the porosity-graded bilayer gas diffusion layer of polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2019, 306: 264-276. |
32 | Tan Z T, Jia L, Zhang Z Q. A study on the transport process in gas diffusion layer of proton exchange membrane fuel cells[J]. Journal of Thermal Science, 2011, 20(5): 449-453 |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[4] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[5] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
[6] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[7] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[8] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[9] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[10] | 周培旭, 李亚伦, 叶恭然, 庄园, 吴曦蕾, 郭智恺, 韩晓红. 有限空间内工质物性对制冷剂泄漏扩散特性的影响[J]. 化工学报, 2023, 74(2): 953-967. |
[11] | 郭祥, 乔金硕, 王振华, 孙旺, 孙克宁. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
[12] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[13] | 方辉煌, 程金星, 罗宇, 陈崇启, 周晨, 江莉龙. 氨电氧化催化剂及其低温直接氨碱性膜燃料电池性能的研究进展[J]. 化工学报, 2022, 73(9): 3802-3814. |
[14] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[15] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||