化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2871-2879.DOI: 10.11949/0438-1157.20191567
收稿日期:
2019-12-23
修回日期:
2020-03-29
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
万里鹰
作者简介:
张伦亮(1992—),男,硕士研究生,基金资助:
Lunliang ZHANG(),Liying WAN(),Juntong HUANG,Xibao LI,Zhijun FENG,Zhi CHEN
Received:
2019-12-23
Revised:
2020-03-29
Online:
2020-06-05
Published:
2020-06-05
Contact:
Liying WAN
摘要:
用含双烯体结构的呋喃甲胺,将硬段为双酚A型E-51环氧树脂(EP)和软段为PEGDE连接成线性大分子,并与含亲双烯体结构的双马来酰亚胺反应,制备出含热可逆Diels-Alder(DA)反应的软-硬-软结构的本征型自修复环氧树脂(EP-DA)。通过FTIR、DSC、TGA和电子万能试验机,对EP-DA结构和性能进行了表征。结果表明:DA动态共价键成功引入EP-DA,且DA正、逆反应的温度分别是60℃、122℃。当EP-DA链段中的PEGDE和EP含量各占50%时,其耐热性和拉伸强度达到最佳。EP-DA还具有良好的再加工性能和多次自修复性能,受损试样在60℃下修复4 h后,裂纹基本愈合,且第一次修复率可达88. 41%,同一试样经过三次修复后,其修复率仍可达68%以上。
中图分类号:
张伦亮, 万里鹰, 黄军同, 李喜宝, 冯志军, 陈智. 基于Diels-Alder动态共价键的含PEGDE片段自修复环氧树脂性能研究[J]. 化工学报, 2020, 71(6): 2871-2879.
Lunliang ZHANG, Liying WAN, Juntong HUANG, Xibao LI, Zhijun FENG, Zhi CHEN. Properties of self-healing epoxy resin containing PEGDE segments based on Diels-Alder dynamic covalent bond[J]. CIESC Journal, 2020, 71(6): 2871-2879.
Samples | PEGDE/g | EP/g | FA/g | 1,8-BMI/g |
---|---|---|---|---|
EP-DA 30 | 30 | 70 | 22.31 | 41.21 |
EP-DA 50 | 50 | 50 | 20.81 | 38.34 |
EP-DA 70 | 70 | 30 | 19.25 | 35.48 |
表1 合成聚合物EP-DA的原料投料比
Table 1 Raw material feed ratios of synthetic polymer EP-DA
Samples | PEGDE/g | EP/g | FA/g | 1,8-BMI/g |
---|---|---|---|---|
EP-DA 30 | 30 | 70 | 22.31 | 41.21 |
EP-DA 50 | 50 | 50 | 20.81 | 38.34 |
EP-DA 70 | 70 | 30 | 19.25 | 35.48 |
Samples | Stress/MPa | Elongation at break/% | Healing efficiency/% |
---|---|---|---|
EP-DA50 0# | 24.26 | 38.47 | — |
EP-DA50 1# | 21.36 | 36.04 | 88.41 |
EP-DA50 2# | 18.40 | 31.97 | 76.17 |
EP-DA50 3# | 16.56 | 26.88 | 68.54 |
表2 试样多次自修复下的拉伸测试和修复率
Table 2 Tensile test and repair rates under multiple self-healing of samples
Samples | Stress/MPa | Elongation at break/% | Healing efficiency/% |
---|---|---|---|
EP-DA50 0# | 24.26 | 38.47 | — |
EP-DA50 1# | 21.36 | 36.04 | 88.41 |
EP-DA50 2# | 18.40 | 31.97 | 76.17 |
EP-DA50 3# | 16.56 | 26.88 | 68.54 |
1 | 陈珂龙, 张桐, 崔溢, 等. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18. |
Chen H L, Zhang T, Cui Y, et al. Research progress of hyperbranched polymer (HBPs) modified epoxy resin[J]. Journal of Materials Engineering, 2019, 47(7): 11-18. | |
2 | Wilkinson A N, Kinloch I A, Othman R N, et al. Low viscosity processing using hybrid CNT-coated silica particles to form electrically conductive epoxy resin composites[J]. Polymer, 2016, 98(1): 32-38. |
3 | Dry C. The study of self healing ability for glass micro-bead filling epoxy resin composites[J]. Computer Structure, 1996, 35(1): 263-270. |
4 | Norris C J, Bond I P, Trask R S. Interactions between propa-gating cracks and bioinspired self-healing vascules embedded in glass fibre reinforced composites[J]. Composites Science and Technology, 2014, 71(6): 847-853. |
5 | Toohey k S, Sottos N R, Lewis J A, et al. Self-healing materials with microvascular networks[J]. Nature Materials, 2007, 6(8): 581-585. |
6 | Hansen C J, Wu W, Toohey K S, et al. Self-healing materials with interpenetrating microvascular networks[J]. Advanced Materials, 2009, 21(41): 4143-4147. |
7 | White S R, Scottos N R, Geubelle P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409(15): 794-797. |
8 | White S R, Moore J S, Sottos N R, et al. Restoration of large D-Amage volumes in polymers[J]. Science, 2014, 344(1): 620-623. |
9 | 胡剑峰, 夏正斌, 司徒粤, 等. MF包封DCPD自修复微胶囊的合成[J]. 化工学报, 2010, 61(11): 2978-2984. |
Hu J F, Xia Z B, Si T Y, et al. Synthesis of MF-encapsulated DCPD self-repairing microcapsules[J]. CIESC Journal, 2010, 61(11): 2978-2984. | |
10 | Burnworth M, Tang L, Kumpfer J R, et al. Optically healable supramolecular polymers[J]. Nature, 2011, 472(7343): 334-337. |
11 | An S Y, Noh S M, Nam J H, et al. Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability[J]. Macromolecular Rapid Communications, 2015, 36(13): 1255-1260. |
12 | 丁晓亚, 王宇, 李杲, 等. 基于亚胺硼酸盐和硼酸酯键的可注射自修复水凝胶及其多重响应性能研究[J]. 高分子学报, 2019, 50(5): 505-515. |
Ding X Y, Wang Y, Li W, et al. Injectable self-repairing hydrogel based on imide borate and borate linkage and its multiple response properties[J]. Acta Polymerica Sinica, 2019, 50(5): 505-515. | |
13 | Feng L B, Yu Z Y, Bian Y H, et al. Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels-Alder reaction and thermal movement of molecular chains[J]. Polymer, 2017, 124(1): 48-49. |
14 | Du P F, Jia H Y, Chen Q H, et al. Slightly crosslinked polyurethane with Diels-Alder adducts from trimethylolpropane[J]. Journal of Applied Polymer Science, 2016, 133(1): 43971-43980. |
15 | Zhong Y T, Wang X L, Zheng Z, et al. Polyether-maleimide-based crosslinked self-healing polyurethane with Diels-Alder bonds[J]. Journal of Applied Polymer Science, 2015, 132(1): 41944-41953. |
16 | Du P F, Wu M Y, Liu X X, et al. Synthesis of linear polyurethane bearing pendant furan and cross-linked healable polyurethane containing Diels-Alder bonds[J]. New Journal of Chemistry, 2014, 38(2): 770-776. |
17 | 吕展, 郭赞如, 贺站锋, 等. 基于酰腙可逆共价键制备溶胶-凝胶转变的可自愈合水凝胶[J]. 功能高分子学报, 2015, 28(4): 373-379. |
Lü Z, Guo Z R, He Z F, et al. Preparation of sol-gel transition self-healing hydrogel based on hydrazide reversible covalent bond[J]. Journal of Functional Polymers, 2015, 28(4): 373-379. | |
18 | Sun C, Jia H, Lei K, et al. Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds[J]. Polymer, 2019, 160(1): 246-253. |
19 | Zhang D D, Ruan Y B, Zhang B Q, et al. A self-healing PDMS elastomer based on acylhydrazone groups and the role of hydrogen bonds[J]. Polymer, 2017, 120(1): 189-196. |
20 | 窦雪宇, 王星, 吴德成. 基于双硫键交换可控构建的水凝胶及其动态交联机理研究[J]. 高分子学报, 2019, 50(5): 429-441. |
Dou X Y, Wang X, Wu D C. Hydrogels controlled by double sulfur bond exchange and their dynamic crosslinking mechanism[J]. Acta Polymerica Sinica, 2019, 50(5): 429-441. | |
21 | Canadell J, Goossens H, Klumperman B. Self-healing materials based on disulfide links[J]. Macromolecules, 2011, 44(8): 2536-2541. |
22 | Li Y, Yang Z, Ding L, et al. Feasible self-healing CL-20 based PBX: employing a novel polyurethane-urea containing disulfide bonds as polymer binder[J]. Reactive and Functional Polymers, 2019, 144(1): 249-257. |
23 | Ying H, Zhang Y, Cheng J. Dynamic urea bond for the design of reversible and self-healing polymers[J]. Nature Communications, 2014, 5(1): 3218-3227. |
24 | Yanagisawa Y, Nan Y, Okuro K, et al. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking[J]. Science, 2017, 359(6371): 7588-7597. |
25 | Yang J X, Long Y Y, Pan L, et al. Spontaneously healable thermoplastic elastomers achieved through one-pot living ring-opening metathesis copolymerization of well-designed bulky monomers[J]. ACS Applied Materials and Interfaces, 2016, 8(19): 12445-12455. |
26 | Xu C H, Cao L M, Lin B F, et al. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17728-17737. |
27 | Tian Q, Yuan Y C, Rong M Z, et al. A thermally remendable epoxy resin[J]. Journal of Materials Chemistry, 2009, 19(9): 1289-1296. |
28 | Li M Y, Liu N, Chen J H, et al. Development of reprocessable novel sulfur-containing epoxy based on thermal treatment[J]. RSC Advances, 2018, 8(1): 28386-28394. |
29 | Peterson A M, Kotthapalli H, Rahmathullah M A M, et al. Investigation of interpenetrating polymer networks for self-healing applications[J]. Composites Science & Technology, 2012, 72(2): 330-336. |
30 | Xu Y R, Chen D J. A novel self-healing polyurethane based on disulfide bonds[J]. Macromolecular Chemistry and Physics, 2016, 217(10): 1191-1196. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[3] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[4] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[5] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[6] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[7] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[8] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[9] | 胡南, 陶德敏, 杨照岚, 王学兵, 张向旭, 刘玉龙, 丁德馨. 铁炭微电解与硫酸盐还原菌耦合修复铀尾矿库渗滤水的研究[J]. 化工学报, 2023, 74(6): 2655-2667. |
[10] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[11] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[12] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[13] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[14] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[15] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||