化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2880-2888.DOI: 10.11949/0438-1157.20191428
收稿日期:
2019-11-25
修回日期:
2020-04-08
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
何孝军
作者简介:
毕宏晖(1996—),男,硕士研究生,基金资助:
Honghui BI(),Shuai JIAO,Feng WEI,Xiaojun HE(
)
Received:
2019-11-25
Revised:
2020-04-08
Online:
2020-06-05
Published:
2020-06-05
Contact:
Xiaojun HE
摘要:
在三聚氰胺为氮源、碳酸钾为活化剂的条件下,由菜籽饼制得了珊瑚状氮掺杂分级多孔碳(CNPCs)。采用场发射扫描电子显微镜、透射电子显微镜、X射线光电子能谱、氮吸脱附等表征手段,研究了三聚氰胺的用量对CNPCs微观形貌、组成及孔隙结构的影响。结果表明,当三聚氰胺的用量为2 g时,所得CNPC2的比表面积达2050 m2·g-1。以6 mol·L-1 KOH为电解液,在0.05 A·g-1的电流密度下,CNPCs的比容可达274 F·g-1;当电流密度为50 A·g-1时,CNPCs的比容为169 F·g-1,显示了优异的倍率性能。经过10000次充放电测试后,比容保持率达96%,展现了良好的循环稳定性。此工作为从生物质大规模生产高性能储能用多孔碳材料提供了一种简单、绿色的方法。
中图分类号:
毕宏晖, 焦帅, 魏风, 何孝军. 珊瑚状氮掺杂多孔碳的制备及其超电容性能[J]. 化工学报, 2020, 71(6): 2880-2888.
Honghui BI, Shuai JIAO, Feng WEI, Xiaojun HE. Preparation of coral-like nitrogen-doped porous carbons and its supercapacitive properties[J]. CIESC Journal, 2020, 71(6): 2880-2888.
Samples | Dap/ nm | SBET/ (m2·g-1) | Smic/ (m2·g-1) | Vt/ (cm3·g-1) | Vmic/ (cm3·g-1) |
---|---|---|---|---|---|
CNPC1 | 2.41 | 1523 | 800 | 0.79 | 0.40 |
CNPC2 | 2.52 | 2050 | 868 | 1.13 | 0.45 |
CNPC3 | 3.29 | 1457 | 523 | 1.11 | 0.25 |
表1 CNPCs样品的孔结构参数
Table 1 Pore structure parameters of CNPCs
Samples | Dap/ nm | SBET/ (m2·g-1) | Smic/ (m2·g-1) | Vt/ (cm3·g-1) | Vmic/ (cm3·g-1) |
---|---|---|---|---|---|
CNPC1 | 2.41 | 1523 | 800 | 0.79 | 0.40 |
CNPC2 | 2.52 | 2050 | 868 | 1.13 | 0.45 |
CNPC3 | 3.29 | 1457 | 523 | 1.11 | 0.25 |
Samples | C 1s/ % | O 1s/ % | N 1s/ % | N functional group ratios/%(area) | |||
---|---|---|---|---|---|---|---|
N-6 | N-5 | N-Q | N-O | ||||
CNPC1 | 72.65 | 24.92 | 2.42 | 11.57 | 52.89 | 28.51 | 7.03 |
CNPC2 | 67.94 | 28.58 | 3.48 | 36.49 | 42.82 | 14.37 | 6.32 |
CNPC3 | 66.03 | 30.55 | 3.42 | 21.64 | 29.53 | 33.03 | 15.80 |
表2 碳、氧、氮元素和表面含氮官能团的含量
Table 2 Contents of carbon, oxygen and nitrogen elements and surface nitrogen-containing functional groups
Samples | C 1s/ % | O 1s/ % | N 1s/ % | N functional group ratios/%(area) | |||
---|---|---|---|---|---|---|---|
N-6 | N-5 | N-Q | N-O | ||||
CNPC1 | 72.65 | 24.92 | 2.42 | 11.57 | 52.89 | 28.51 | 7.03 |
CNPC2 | 67.94 | 28.58 | 3.48 | 36.49 | 42.82 | 14.37 | 6.32 |
CNPC3 | 66.03 | 30.55 | 3.42 | 21.64 | 29.53 | 33.03 | 15.80 |
图7 CNPCs电极在扫描速率为10 mV·s-1下的循环伏安曲线(a)和CNPC2电极在不同扫描速率下的循环伏安曲线(b)
Fig.7 CV curves of CNPCs electrodes at a scanning rate of 10 mV·s-1(a) and CV curves of CNPC2 electrode at different scanning rates (b)
图8 CNPCs电极在0.05 A·g-1电流密度下的GCD曲线(a); CNPCs电极在不同电流密度时的比容(b); CNPCs电容器的Ragone图(c); CNPC2电极在5 A·g-1电流密度下10000次循环后的比容保持率(d)
Fig.8 GCD curves of CNPCs electrodes at 0.05 A·g-1 (a); specific capacitances of CNPCs electrodes at different current densities(b); Ragone plots of CNPCs supercapacitors(c); capacitance retention of CNPC2 electrode at 5 A·g-1 after 10000 cycles(d)
1 | Quiroz-Cardoso O, Oros-Ruiz S, Solis-Gomez A, et al. Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light[J]. Fuel, 2019, 237: 227-235. |
2 | Dou Q Y, Lu Y N, Su L J, et al. A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5 V carbon-based supercapacitor[J]. Energy Storage Mater., 2019, 23: 603-609. |
3 | Xia J S, Zhang N, Chong S K, et al. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor[J]. Green Chem., 2018, 20: 694-700. |
4 | He X J, Xie X Y, Wang J X, et al. From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors[J]. Nanoscale, 2019, 11(14): 6610-6619. |
5 | 禹兴海, 罗齐良, 潘剑, 等. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600. |
Yu X H, Luo Q L, Pan J, et al. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. CIESC Journal, 2019, 70(9): 3590-3600. | |
6 | Liu X G, Ma C D, Li J X, et al. Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors[J]. J. Power Sources, 2019, 412: 1-9. |
7 | Liu Y, Shi Z J, Gao Y F, et al. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes[J]. ACS Appl. Mater. Interfaces, 2016, 8(42): 28283-28290. |
8 | Yu P F, Liang Y R, Dong H W, et al. Rational synthesis of highly porous carbon from waste bagasse for advanced supercapacitor application[J]. ACS Sustainable Chem. Eng., 2018, 6(11): 15325-15332. |
9 | Zhang Y, Liu S S, Zheng X Y, et al. Biomass organs control the porosity of their pyrolyzed carbon[J]. Adv. Funct. Mater., 2017, 27(3): 1604687. |
10 | 后振中, 彭龙贵, 李颖, 等. 分级多孔聚吡咯膜的界面自组装合成与电化学电容性[J]. 化工学报, 2018, 69 (9): 4121-4128. |
Hou Z Z, Peng L G, Li Y, et al. Interfacial self-assembly synthesis and electrochemical capacitance of hierarchical porous polypyrrole films[J]. CIESC J., 2018, 69 (9): 4121-4128. | |
11 | Zhao G Y, Chen C, Yu D F, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors[J]. Nano Energy, 2018, 47: 547-555. |
12 | Zhang Q, Han K H, Li S J, et al. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors[J]. Nanoscale, 2018, 10(5): 2427-2437. |
13 | Dai S G, Liu Z, Zhao B, et al. A high-performance supercapacitor electrode based on N-doped porous graphene[J]. J. Power Sources, 2018, 387: 43-48. |
14 | Lv B J, Li P P, Liu Y, et al. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes[J]. Appl. Surf. Sci., 2018, 437: 169-175. |
15 | Wang B, Wang Y H, Peng Y Y, et al. Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage[J]. Chem. Eng. J., 2018, 348: 850-859. |
16 | Dong S A, He X J, Zhang H F, et al. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors[J]. J. Mater. Chem. A, 2018, 6(33): 15954-15960. |
17 | Li X G, Guan B Y, Gao S Y, et al. A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction[J]. Energy Environ. Sci., 2019, 12(2): 648-655. |
18 | Shao J Q, Song M Y, Wu G, et al. 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in-situ coating[J]. Energy Storage Mater., 2018, 13: 57-65. |
19 | Yu S K, Sun N, Hu L F, et al. Self-template and self-activation synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors[J]. J. Power Sources, 2018, 405: 132-141. |
20 | Lin G X, Ma R G, Zhou Y, et al. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction[J]. Electrochim. Acta, 2018, 261: 49-57. |
21 | Liang C, Liang S, Xia Y, et al. Synthesis of hierarchical porous carbon from metal carbonates towards high-performance lithium storage[J]. Green Chem., 2018, 20(7): 1484-1490. |
22 | Pan L, Wang Y X, Hu H, et al. 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors[J]. Carbon, 2018, 134: 345-353. |
23 | Zou K X, Deng Y F, Chen J P, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors[J]. J. Power Sources, 2018, 378: 579-588. |
24 | Zhang W, Yu C Y, Chang L B, et al. Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors[J]. Electrochim. Acta, 2018, 282: 642-652. |
25 | Zuo S X, Chen J, Liu W J, et al. Preparation of 3D interconnected hierarchical porous N-doped carbon nanotubes[J]. Carbon, 2018, 129: 199-206. |
26 | Wei F, He X J, Zhang H F, et al. Crumpled carbon nanonets derived from anthracene oil for high energy density supercapacitor[J]. J. Power Sources, 2019, 428: 8-12. |
27 | Dong X M, Jin H L, Wang R Y, et al. High volumetric capacitance, ultralong life supercapacitors enabled by eaxberry-derived hierarchical porous carbon materials[J]. Adv. Energy Mater., 2018, 8(11): 1702695. |
28 | Zhao Y Q, Lu M, Tao P Y, et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors[J]. J. Power Sources, 2016, 307: 391-400. |
29 | 张璇, 杨佳兴, 金秋阳, 等. 超盐环境下含氮碳气凝胶的制备及其在超级电容器中的应用[J]. 化工学报, 2019, 70(7): 2748-2757. |
Zhang X, Yang J X, Jin Q Y, et al. Preparation of nitrogen-doped carbon aerogel under hypersaline condition and its application for supercapacitors[J]. CIESC Journal, 2019, 70(7): 2748-2757. | |
30 | Wang Q, Qin B, Zhang X H, et al. Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors[J]. J. Mater. Chem. A, 2018, 6(40): 19653-19663. |
31 | Wang T, Sun Y, Zhang L L, et al. Space-confined polymerization: controlled fabrication of nitrogen-doped polymer and carbon nicrospheres with refined hierarchical architectures[J]. Adv. Mater., 2019, 31(16): 1807876. |
32 | He H N, Huang D, Tang Y G, et al. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage[J]. Nano Energy, 2019, 57: 728-736. |
33 | 贺新福, 龙雪颖, 吴红菊, 等. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315. |
He X F, Long X Y, Wu H J, et al. Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction[J]. CIESC Journal, 2019, 70(6): 2308-2315. | |
34 | Zhang Y T, Zhang K B, Ren S Z, et al. 3D nanoflower-like composite anode of α-Fe2O3/coal-based graphene for lithium-ion batteries[J]. J. Alloy. Compd., 2019, 792: 828-834. |
35 | Liu S M, Liang Y R, Zhou W, et al. Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high-performance supercapacitors[J]. J. Mater. Chem. A, 2018, 6(25): 12046-12055. |
36 | Zhu Q L, Pachfule P, Strubel P, et al. Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage[J]. Energy Storage Mater., 2018, 13: 72-79. |
37 | Wan L, Song P, Liu J X, et al. Facile synthesis of nitrogen self-doped hierarchical porous carbon derived from pine pollen via MgCO3 activation for high-performance supercapacitors[J]. J. Power Sources, 2019, 438: 227013. |
38 | Zhang Y T, Zhang K B, Jia K L, et al. Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties[J]. Fuel, 2019, 241: 646-652. |
39 | 魏风, 毕宏晖, 焦帅, 等. 超级电容器用相互连接的类石墨烯纳米片[J]. 物理化学学报, 2020, 36(2): 1903043. |
Wei F, Bi H H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Phys.-Chim. Sin., 2020, 36(2): 1903043. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[6] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[9] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[10] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[11] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[12] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[13] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[14] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[15] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 545
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 587
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||