化工学报 ›› 2020, Vol. 71 ›› Issue (7): 2973-2982.DOI: 10.11949/0438-1157.20200026
收稿日期:
2020-01-07
修回日期:
2020-04-20
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
姜岩
作者简介:
姜岩(1971—),男,博士,教授,基金资助:
Received:
2020-01-07
Revised:
2020-04-20
Online:
2020-07-05
Published:
2020-07-05
Contact:
Yan JIANG
摘要:
以亲疏水性为切入点,针对含多组分挥发性有机物(volatile organic compounds,VOCs)的工业废气,综述了生物滴滤床技术(biotrickling filters,BTFs)的研究现状与发展趋势。重点围绕多组分VOCs之间的拮抗作用、协同作用、交互作用,总结与剖析了三大作用的研究现状与成因,从BTFs内气液/固两相传质和生物降解动力学模型入手,阐述了BTFs中VOCs的传质和生物转化过程及其相互作用机制。展望了BTFs适应当前市场需求的应用化发展前景,提出以削弱或抑制拮抗作用、构建和强化协同作用体系为研究方向,通过强化对共代谢和增溶等作用机制的理论认知,构建具有协同效应的VOCs处理体系,进而推动BTFs的理论发展和应用推广。
中图分类号:
姜岩, 张哲. 不同亲水特性VOCs在生物滴滤工艺中的作用规律[J]. 化工学报, 2020, 71(7): 2973-2982.
Yan JIANG, Zhe ZHANG. Interaction of VOCs with different hydrophilic properties in biotrickling filters[J]. CIESC Journal, 2020, 71(7): 2973-2982.
目标污染物 | 菌种 | 去除优先级 | 拮抗作用 | 作 者 |
---|---|---|---|---|
B、T、E、X、M | Rhodococcus sp. | T>B>X>M>E | E抑制最强,M最弱; M对E抑制最小,对T最大 | Lee等[ |
正己烷、BTEX | 活性污泥 | T、B>E、间/对二甲苯(m/p-X)> 邻二甲苯(o-X)>正己烷 | BTEX明显抑制正己烷,且随BTEX浓度增大而增强 | Amin等[ |
T、o-X、二氯甲烷 | Zoogloea resiniphila HJ1和Methylobacterium rhodesianum H13 | T> o-X >二氯甲烷 | 混合进气浓度越大,相互抑制作用越强 | Hu等[ |
异丙醇、丙酮 | 活性污泥 | 异丙醇>丙酮 | 异丙醇明显抑制丙酮 | Chang等[ |
正丁醇、异丁醇 | 活性污泥 | 正丁醇>异丁醇 | 混合进气浓度越高,抑制异丁醇的生化反应越强 | Chan等[ |
甲醇、乙醇、丙酮、T | Pseudomonas aeruginosa、Bacillus sp.和Chryseobacterium joostei | 乙醇>甲醇>丙酮>T | 甲醇、乙醇对T的降解存在抑制作用 | Balasubramanian等[ |
丙醛、己醇、甲基异丁基酮、T | Paecilomyces variotii(或活性污泥) | 丙醛>己醇>甲基异丁基酮>T | 丙醛抑制其他三种VOCs的降解 | Estrada等[ |
甲醇、α-蒎烯 | 驯化的混合菌群 | 甲醇>α-蒎烯 | 甲醇对α-蒎烯的降解产生拮抗;反之,无影响 | López等[ |
丁酮、甲基异丁基甲酮、T、E、o-X | 活性污泥 | T>E> o-X >甲基异丁甲酮>丁酮 | T、E、o-X抑制丁酮、甲基异丁基甲酮,T尤其明显 | Datta等[ |
表1 VOCs间的拮抗作用
Table 1 Antagonism among multiple VOCs
目标污染物 | 菌种 | 去除优先级 | 拮抗作用 | 作 者 |
---|---|---|---|---|
B、T、E、X、M | Rhodococcus sp. | T>B>X>M>E | E抑制最强,M最弱; M对E抑制最小,对T最大 | Lee等[ |
正己烷、BTEX | 活性污泥 | T、B>E、间/对二甲苯(m/p-X)> 邻二甲苯(o-X)>正己烷 | BTEX明显抑制正己烷,且随BTEX浓度增大而增强 | Amin等[ |
T、o-X、二氯甲烷 | Zoogloea resiniphila HJ1和Methylobacterium rhodesianum H13 | T> o-X >二氯甲烷 | 混合进气浓度越大,相互抑制作用越强 | Hu等[ |
异丙醇、丙酮 | 活性污泥 | 异丙醇>丙酮 | 异丙醇明显抑制丙酮 | Chang等[ |
正丁醇、异丁醇 | 活性污泥 | 正丁醇>异丁醇 | 混合进气浓度越高,抑制异丁醇的生化反应越强 | Chan等[ |
甲醇、乙醇、丙酮、T | Pseudomonas aeruginosa、Bacillus sp.和Chryseobacterium joostei | 乙醇>甲醇>丙酮>T | 甲醇、乙醇对T的降解存在抑制作用 | Balasubramanian等[ |
丙醛、己醇、甲基异丁基酮、T | Paecilomyces variotii(或活性污泥) | 丙醛>己醇>甲基异丁基酮>T | 丙醛抑制其他三种VOCs的降解 | Estrada等[ |
甲醇、α-蒎烯 | 驯化的混合菌群 | 甲醇>α-蒎烯 | 甲醇对α-蒎烯的降解产生拮抗;反之,无影响 | López等[ |
丁酮、甲基异丁基甲酮、T、E、o-X | 活性污泥 | T>E> o-X >甲基异丁甲酮>丁酮 | T、E、o-X抑制丁酮、甲基异丁基甲酮,T尤其明显 | Datta等[ |
目标污染物 | 菌种 | 去除优先级 | 交互作用 | 作 者 |
---|---|---|---|---|
BTEX、THF | Pseudomonas oleovorans DT4 | THF>BTEX | T、B抑制THF;而THF存在使m-X、p-X和E实现共代谢 | Zhou等[ |
BTEX | 驯化的混合菌群 | — | T和E抑制B;但B促进T降解;o-X可以与T和B共代谢 | Littlejohns等[ |
T、B、p-X | 驯化的混合菌群 | — | T促进B、p-X降解;T和B无相互作用;p-X增加B降解的延滞期 | Sui等[ |
T、正丙醇 | 驯化的混合菌群 | 正丙醇>T | 低浓度正丙醇促进T降解;当浓度高于1 g/m3则产生抑制 | Dixit等[ |
T、TCE | Pseudomonas putida F1 | T>TCE | 浓度高于2800 μg/L 的T抑制TCE降解,但产生甲苯双加氧酶又有促进作用 | Jung等[ |
T、丙酮、TCE | 驯化的混合菌群 | 丙酮>T>TCE | 甲苯氧化酶促进TCE去除,但丙酮浓度高于1901 mg/m3时,会抑制T和TCE | Den等[ |
甲醇、TCE | G. moniliformis (F. verticillioides)和F.solani | 甲醇>TCE | 甲醇可促进TCE降解;但其加载速率增大时,则产生抑制 | Chheda 等[ |
表2 VOCs之间的交互作用
Table 2 Interaction among multiple VOCs
目标污染物 | 菌种 | 去除优先级 | 交互作用 | 作 者 |
---|---|---|---|---|
BTEX、THF | Pseudomonas oleovorans DT4 | THF>BTEX | T、B抑制THF;而THF存在使m-X、p-X和E实现共代谢 | Zhou等[ |
BTEX | 驯化的混合菌群 | — | T和E抑制B;但B促进T降解;o-X可以与T和B共代谢 | Littlejohns等[ |
T、B、p-X | 驯化的混合菌群 | — | T促进B、p-X降解;T和B无相互作用;p-X增加B降解的延滞期 | Sui等[ |
T、正丙醇 | 驯化的混合菌群 | 正丙醇>T | 低浓度正丙醇促进T降解;当浓度高于1 g/m3则产生抑制 | Dixit等[ |
T、TCE | Pseudomonas putida F1 | T>TCE | 浓度高于2800 μg/L 的T抑制TCE降解,但产生甲苯双加氧酶又有促进作用 | Jung等[ |
T、丙酮、TCE | 驯化的混合菌群 | 丙酮>T>TCE | 甲苯氧化酶促进TCE去除,但丙酮浓度高于1901 mg/m3时,会抑制T和TCE | Den等[ |
甲醇、TCE | G. moniliformis (F. verticillioides)和F.solani | 甲醇>TCE | 甲醇可促进TCE降解;但其加载速率增大时,则产生抑制 | Chheda 等[ |
动力学模型 | 表达式 | 目标污染物 | 文献 |
---|---|---|---|
Monod | T、 E | [ | |
Haldane (Andrews) | ST、E | [ | |
Levenspiel | α-蒎烯、醋酸正丁酯 | [ | |
Edwards | o-X | [ | |
改进Compertz | BTEX中双底物混合 | [ | |
竞争抑制动力学 | B和E、o-X | [ | |
非竞争抑制动力学 | — | [ | |
反竞争抑制动力学 | — | [ | |
无相互作用的Monod动力学 | B和E、o-X | [ | |
带有特定交互作用的抑制动力学(SKIP) | B、T、E、X | [ |
表3 常见的处理VOCs的动力学模型
Table 3 Common kinetic models used for the treatment of VOCs
动力学模型 | 表达式 | 目标污染物 | 文献 |
---|---|---|---|
Monod | T、 E | [ | |
Haldane (Andrews) | ST、E | [ | |
Levenspiel | α-蒎烯、醋酸正丁酯 | [ | |
Edwards | o-X | [ | |
改进Compertz | BTEX中双底物混合 | [ | |
竞争抑制动力学 | B和E、o-X | [ | |
非竞争抑制动力学 | — | [ | |
反竞争抑制动力学 | — | [ | |
无相互作用的Monod动力学 | B和E、o-X | [ | |
带有特定交互作用的抑制动力学(SKIP) | B、T、E、X | [ |
1 | Zheng C H, Shen J L, Zhang Y X, et al. Quantitative assessment of industrial VOC emissions in China: historical trend, spatial distribution, uncertainties, and projection[J]. Atmospheric Environment, 2017, 150: 116-125. |
2 | Yang C T, Miao G, Pi Y H, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. |
3 | Dobslaw D, Schulz A, Helbich S, et al. VOC removal and odor abatement by a low-cost plasma enhanced biotrickling filter process[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5501-5511. |
4 | Wei Z S, Sun J L, Xie Z R, et al. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 814-821. |
5 | Quan Y, Wu H, Yin Z H, et al. Effect of static magnetic field on trichloroethylene removal in a biotrickling filter[J]. Bioresource Technology, 2017, 239: 7-16. |
6 | Wu H, Yan H Y, Quan Y, et al. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment[J]. Journal Environmental Management, 2018, 222: 409-419. |
7 | Rybarczyk P, Szulczyński B, Gębicki J, et al. Treatment of malodorous air in biotrickling filters: a review[J]. Biochemical Engineering Journal, 2019, 141: 146-162. |
8 | Balasubramanian P, Philip L, Bhallamudi S M. Biotrickling filtration of VOC emissions from pharmaceutical industries[J]. Chemical Engineering Journal, 2012, 209: 102-112. |
9 | Cheng Y, He H J, Yang C P, et al. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds[J]. Biotechnology Advances, 2016, 34(6): 1091-1102. |
10 | Deshusses M A, Johnson C T. Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment[J]. Environmental Science & Technology, 2000, 34(3): 461-467. |
11 | 吕阳, 刘京, 吕炳南, 等, 生物滴滤塔处理甲醛和三苯混合气体的实验研究[J]. 天津大学学报, 2007, 40(10): 1215-1220. |
Lyu Y, Liu J, Lyu B N, et al. Experiment of removing formaldehyde, benzene, toluene and xylene mixed gas by biotricking filter[J]. Journal of Tianjin University, 2007, 40(10): 1215-1220. | |
12 | Reardon K F, Mosteller D C, Bull Rogers J D. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1[J]. Biotechnology and Bioengineering, 2000, 69(4): 385-400. |
13 | Sui H, Li X G, Jiang B. Benzene, toluene and p-xylene interactions and the role of microbial communities in remediation using bioventing[J]. The Canadian Journal of Chemical Engineering, 2005, 83(2): 310-315. |
14 | Jung I G, Park O H. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration[J]. Journal of Bioscience and Bioengineering, 2005, 100(4): 657-661. |
15 | Zhang Y F, Liss S N, Allen D G. The effects of methanol on the biofiltration of dimethyl sulfide in inorganic biofilters[J]. Biotechnology and Bioengineering, 2006, 95: 734-743. |
16 | Yang C P, Qian H, Li X, et al. Simultaneous removal of multicomponent VOCs in biofilters[J]. Trends in Biotechnology, 2018, 36(7): 673-685. |
17 | Carvajal A, Akmirza I, Navia D, et al. Anoxic denitrification of BTEX: biodegradation kinetics and pollutant interactions[J]. Journal of Environmental Management, 2018, 214: 125-136. |
18 | Lee E H, Cho K S. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp.[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 669-674. |
19 | Amin M M, Rahimi A, Bina B, et al. Biodegradation of n-hexane as single pollutant and in a mixture with BTEX in a scoria/compost-based biofilter[J]. Process Safety of Environmental Protection, 2017, 107: 508-517. |
20 | Hu J, Zhang L L, Chen J M, et al. Performance and microbial analysis of a biotrickling filter inoculated by a specific bacteria consortium for removal of a simulated mixture of pharmaceutical volatile organic compounds[J]. Chemical Engineering Journal, 2016, 304: 757-765. |
21 | Chang K, Lu C. Biofiltration of isopropyl alcohol and acetone mixtures by a trickle-bed air biofilter[J]. Process Biochemistry, 2003, 39(4): 415-423. |
22 | Chan W C, Lai Y Z. Kinetic characteristics of n-butyl alcohol and iso-butyl alcohol in a composite bead air biofilter[J]. Bioresource Technology, 2008, 99(10): 4380-4385. |
23 | Estrada J M, Hernández S, Muñoz R, et al. A comparative study of fungal and bacterial biofiltration treating a VOC mixture[J]. Journal of Hazardous Materials, 2013, 250: 190-197. |
24 | López M E, Rene E R, Malhautier L, et al. One-stage biotrickling filter for the removal of a mixture of volatile pollutants from air: performance and microbial community analysis[J]. Bioresource Technology, 2013, 138: 245-252. |
25 | Datta A, Philip L, Bhallamudi S M. Modeling the biodegradation kinetics of aromatic and aliphatic volatile pollutant mixture in liquid phase[J]. Chemical Engineering Journal, 2014, 241: 288-300. |
26 | Lee T H, Kim J, Kim M J, et al. Degradation characteristics of methyl ethyl ketone by Pseudomonas sp. KT-3 in liquid culture and biofilter[J]. Chemosphere, 2006, 63(2): 315-322. |
27 | Chan W C, Su M Q. Biofiltration of ethyl acetate and amyl acetate using a composite bead biofilter[J]. Bioresource Technology, 2008, 99(17): 8016-8021. |
28 | Dixit R M, Deshmukh S C, Gadhe A A, et al. Treatment of mixtures of toluene and n-propanol vapours in a compost–woodchip-based biofilter[J]. Environmental Technology, 2012, 33(7): 751-760. |
29 | Paca J, Halecky M, Novak V, et al. Biofiltration of a styrene/acetone vapor mixture in two reactor types under conditions of acetone overloading[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(6): 772-777. |
30 | Padhi S K, Gokhale S. Treatment of gaseous volatile organic compounds using a rotating biological filter[J]. Bioresource Technology, 2017, 244: 270-280. |
31 | Datta A, Philip L. Biodegradation kinetics of toluene, ethylbenzene, and xylene as a mixture of VOCs[M]//Urban Ecology, Water Quality and Climate Change. Cham: Springer, 2018: 275-291. |
32 | Kasi M, Wadhawan T, Simsek H, et al. Enricher reactor—permeable reactive biobarrier approach for removing a mixture of contaminants with substrate interactions[J]. Bioresource Technology, 2013, 146: 336-344. |
33 | Den W, Huang C, Li C H. Effects of cross-substrate interaction on biotrickling filtration for the control of VOC emissions[J]. Chemosphere, 2004, 57(7): 697-709. |
34 | Suttinun O, Luepromchai E, Müller R. Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation[J]. Reviews in Environmental Science and Bio/Technology, 2013, 12(1): 99-114. |
35 | Jiang Y H, Lin X J, Li W H, et al. Study on the kinetics and removal formula of methanethiol by ethanol absorption[J]. Environments, 2016, 3(4): 27. |
36 | Rybarczyk P, Szulczyński B, Gospodarek M, et al. Effects of n-butanol presence, inlet loading, empty bed residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapors from air[J]. Chemical Papers, 2020, 74: 1039-1047. |
37 | Zhou Y Y, Chen D Z, Zhu R Y, et al. Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4[J]. Bioresource Technology, 2011, 102(12): 6644-6649. |
38 | Littlejohns J V, Daugulis A J. Kinetics and interactions of BTEX compounds during degradation by a bacterial consortium[J]. Process Biochemistry, 2008, 43(10): 1068-1076. |
39 | Chheda D, Sorial G A. Evaluation of co-metabolic removal of trichloroethylene in a biotrickling filter under acidic conditions[J]. Journal of Environmental Sciences, 2017, 57: 54-61. |
40 | Vergara-Fernández A, Yánez D, Morales P, et al. Biofiltration of benzo [α] pyrene, toluene and formaldehyde in air by a consortium of Rhodococcus erythropolis and Fusarium solani: effect of inlet loads, gas flow and temperature[J]. Chemical Engineering Journal, 2018, 332: 702-710. |
41 | 杨卫兵. 复合菌剂及其高效菌株降解BTX的性能和机理研究[D]. 杭州: 浙江工业大学, 2010. |
Yang W B. Research on performance and mechanism of composite microorganism agent and its high-efficiency microbial strains degrading BTX[D]. Hangzhou: Zhejiang University of Technology, 2010. | |
42 | Vergara-Fernández A, Hernández S, Revah S. Phenomenological model of fungal biofilters for the abatement of hydrophobic VOCs[J]. Biotechnology and Bioengineering, 2008, 101(6): 1182-1192. |
43 | Vergara-Fernández A, Revah S, Moreno-Casas P, et al. Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling[J]. Biotechnology Advances, 2018, 36(4): 1079-1093. |
44 | Cheng Z W, Zhang X M, Lu L C, et al. Ternary mixture biodegraded by a fungal-bacterial consortium: interaction, kinetic analysis, and performance evaluation[J]. Journal of Environmental Engineering, 2019, 145(10): 04019069. |
45 | Chen D Z, Zhao X Y, Miao X P, et al. A solid composite microbial inoculant for the simultaneous removal of volatile organic sulfide compounds: preparation, characterization, and its bioaugmentation of a biotrickling filter[J]. Journal of Hazardous Materials, 2018, 342: 589-596. |
46 | Strauss J M, Riedel K J, Du Plessis C A. Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter[J]. Applied Microbiology and Biotechnology, 2004, 64(6): 855-861. |
47 | Montebello A M, Fernández M, Almenglo F, et al. Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters[J]. Chemical Engineering Journal, 2012, 200: 237-246. |
48 | Chalupa J, Pocik O, Halecky M, et al. Thermophilic waste air treatment of an airborne ethyl acetate/toluene mixture in a bubble column reactor: stability towards temperature changes[J]. Journal of Hazardous Materials, 2020, 384: 120744. |
49 | Ottengraf S P P, van den Oever A H C. Kinetics of organic compound removal from waste gases with a biological filter[J]. Biotechnology and Bioengineering, 1983, 25(12): 3089-3102. |
50 | 孙珮石, 杨显万, 谢蕴国, 等. 生物法净化低浓度挥发性有机废气的动力学问题探讨[J]. 环境科学学报,1999, 19(2): 153-158. |
Sun P S, Yang X W, Xie Y G, et al. Kinetics of purifying waste gases containing volatile organic compounds (VOC) in low concentration by using the biological methods[J]. Acta Scientiae Circumstantiae, 1999, 19(2): 153-158. | |
51 | 孙珮石, 黄兵, 黄若华, 等. 生物法净化挥发性有机废气的吸附-生物膜理论模型与模拟研究[J]. 环境科学, 2002, 23(3): 14-17. |
Sun P S, Huang B, Huang R H, et al. Kinetic model and simulation of the adsorption biofilm theory for the process of biopurify VOC waste gases[J]. Environmental Science, 2002, 23(3): 14-17. | |
52 | Raj I, Vaidya A N, Pandey R A, et al. Recent advancements in the mitigation of obnoxious nitrogenous gases[J]. Journal of Environmental Management, 2018, 205: 319-336. |
53 | San-Valero P, Gabaldón C, Penya-Roja J, et al. Study of mass oxygen transfer in a biotrickling filter for air pollution control[J]. Procedia Engineering, 2012, 42: 1726-1730. |
54 | 薛芳. 生物滴滤法处理正丁醇废气的研究[D]. 上海: 上海师范大学, 2007. |
Xue F. Study on n-butyl alcohol treatment by biotrickling filter[D]. Shanghai: Shanghai Normal University, 2007. | |
55 | San-Valero P, Penya-Roja J M, Álvarez-Hornos F J, et al. Modelling mass transfer properties in a biotrickling filter for the removal of isopropanol[J]. Chemical Engineering Science, 2014, 108: 47-56. |
56 | San-Valero P, Penya-roja J, Álvarez-Hornos F J, et al. Dynamic mathematical modelling of the removal of hydrophilic VOCs by biotrickling filters[J]. International Journal of Environmental Research and Public Health, 2015, 12(1): 746-766. |
57 | Lebrero R, Estrada J M, Muñoz R, et al. Toluene mass transfer characterization in a biotrickling filter[J]. Biochemical Engineering Journal, 2012, 60: 44-49. |
58 | Estrada J M, Dudek A, Muñoz R, et al. Fundamental study on gas–liquid mass transfer in a biotrickling filter packed with polyurethane foam[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(9): 1419-1424. |
59 | Muñoz R, Daugulis A J, Hernández M, et al. Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds[J]. Biotechnology Advances, 2012, 30(6): 1707-1720. |
60 | Parnian P, Zamir S M, Shojaosadati S A. Styrene vapor mass transfer in a biotrickling filter: effects of silicone oil volume fraction, gas-to-liquid flow ratio, and operating temperature[J]. Chemical Engineering Journal, 2016, 284: 926-933. |
61 | Lebrero R, Rodríguez E, Estrada J M, et al. Odor abatement in biotrickling filters: effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal[J]. Bioresource Technology, 2012, 109: 38-45. |
62 | Wu C, Xu P L, Xu B L, et al. o-Xylene removal using one-and two-phase partitioning biotrickling filters: steady/transient-state performance and microbial community[J]. Environmental Technology, 2018, 39(1): 109-119. |
63 | Boojari M A, Zamir S M, Shojaosadati S A. Transient-state strategies for the removal of toluene vapor in a two-liquid phase biotrickling filter: experimental study and neural network analysis[J]. Process Safety and Environmental Protection, 2019, 121: 184-193. |
64 | 姜岩, 张晓华, 杨颖, 等. 基于约氏不动杆菌的萘生物降解特性[J]. 化工学报, 2016, 67(9): 3981-3987. |
Jiang Y, Zhang X H, Yang Y, et al. Napthalene biodegration by Acinetobacter johnsonii[J]. CIESC Journal, 2016, 67(9): 3981-3987. | |
65 | Jiang Y, Qi H, Zhang X M. Co-biodegradation of anthracene and naphthalene by the bacterium Acinetobacter johnsonii[J]. Journal of Environmental Science and Health, Part A, 2018, 53(5): 448-456. |
66 | Jiang Y, Qi H, Zhang X M. Co-biodegradation of naphthalene and phenanthrene by Acinetobacter johnsonii[J]. Polycyclic Aromatic Compounds, 2020, 40(2): 422-431. |
67 | Jiang Y, Zhang Z, Zhang X M. Co-biodegradation of pyrene and other PAHs by the bacterium Acinetobacter johnsonii[J]. Ecotoxicology and Environmental Safety, 2018, 163: 465-470. |
68 | Gallastegui G, Á Ramirez A, Elías A, et al. Performance and macrokinetic analysis of biofiltration of toluene and p-xylene mixtures in a conventional biofilter packed with inert material[J]. Bioresource Technology, 2011, 102(17): 7657-7665. |
69 | Jesus J, Frascari D, Pozdniakova T, et al. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: a review[J]. Journal of Hazardous Materials, 2016, 309: 37-52. |
70 | Hazrati H, Shayegan J, Seyedi S M. Biodegradation kinetics and interactions of styrene and ethylbenzene as single and dual substrates for a mixed bacterial culture[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 72. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[5] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[6] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[7] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[8] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[9] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[10] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[11] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[12] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[13] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[14] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[15] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||