化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3140-3150.DOI: 10.11949/0438-1157.20191072
收稿日期:
2019-09-23
修回日期:
2020-03-15
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
赵众
作者简介:
黄健(1995—),男,硕士研究生, 基金资助:
Received:
2019-09-23
Revised:
2020-03-15
Online:
2020-07-05
Published:
2020-07-05
Contact:
Zhong ZHAO
摘要:
在延迟焦化装置中,焦化炉热效率是操作先进性关键评价指标,然而实际工业生产中难以在线测得加热炉热效率。本文基于机理建模,推导了管式加热炉状态空间预测模型。为降低干扰影响,提出了一种基于粒子滤波的联合估计方法来修正加热炉热效率模型预测,并分析了其收敛性。实际应用结果证实了所提方法的可行性和有效性,为实现延迟焦化装置先进控制奠定了基础。
中图分类号:
黄健, 赵众. 延迟焦化加热炉热效率的机理建模与实时估计应用[J]. 化工学报, 2020, 71(7): 3140-3150.
Jian HUANG, Zhong ZHAO. Mechanism modeling and real-time estimation application of thermal efficiency for delayed coking furnace[J]. CIESC Journal, 2020, 71(7): 3140-3150.
化验分析数据 | 模型预测值 | 相对误差 | 误差百分比 |
---|---|---|---|
94.1283 | 93.97047 | 0.157898 | 0.17 |
94.0898 | 93.96148 | 0.128333 | 0.14 |
94.0552 | 94.06848 | -0.01326 | 0.02 |
94.0855 | 93.92905 | 0.156486 | 0.17 |
94.1410 | 93.89776 | 0.243265 | 0.26 |
94.1543 | 93.88981 | 0.264489 | 0.28 |
94.0818 | 93.92463 | 0.157184 | 0.17 |
94.0240 | 94.04803 | -0.02398 | 0.03 |
93.9775 | 94.01946 | -0.04191 | 0.05 |
94.1575 | 94.08129 | 0.076286 | 0.08 |
94.1625 | 94.08595 | 0.076617 | 0.08 |
94.1695 | 94.07200 | 0.097571 | 0.10 |
94.1224 | 94.03293 | 0.089539 | 0.10 |
94.1636 | 94.06520 | 0.098439 | 0.11 |
94.1688 | 94.05069 | 0.118199 | 0.13 |
94.0913 | 94.10989 | -0.0185 | 0.02 |
93.9819 | 94.07428 | -0.09235 | 0.10 |
93.9182 | 94.06282 | -0.14457 | 0.15 |
93.9344 | 94.06899 | -0.13455 | 0.14 |
94.1415 | 94.03183 | 0.109697 | 0.12 |
表1 模型计算对比
Table 1 Model prediction results
化验分析数据 | 模型预测值 | 相对误差 | 误差百分比 |
---|---|---|---|
94.1283 | 93.97047 | 0.157898 | 0.17 |
94.0898 | 93.96148 | 0.128333 | 0.14 |
94.0552 | 94.06848 | -0.01326 | 0.02 |
94.0855 | 93.92905 | 0.156486 | 0.17 |
94.1410 | 93.89776 | 0.243265 | 0.26 |
94.1543 | 93.88981 | 0.264489 | 0.28 |
94.0818 | 93.92463 | 0.157184 | 0.17 |
94.0240 | 94.04803 | -0.02398 | 0.03 |
93.9775 | 94.01946 | -0.04191 | 0.05 |
94.1575 | 94.08129 | 0.076286 | 0.08 |
94.1625 | 94.08595 | 0.076617 | 0.08 |
94.1695 | 94.07200 | 0.097571 | 0.10 |
94.1224 | 94.03293 | 0.089539 | 0.10 |
94.1636 | 94.06520 | 0.098439 | 0.11 |
94.1688 | 94.05069 | 0.118199 | 0.13 |
94.0913 | 94.10989 | -0.0185 | 0.02 |
93.9819 | 94.07428 | -0.09235 | 0.10 |
93.9182 | 94.06282 | -0.14457 | 0.15 |
93.9344 | 94.06899 | -0.13455 | 0.14 |
94.1415 | 94.03183 | 0.109697 | 0.12 |
滤波 | 热效率标准误差 |
---|---|
KF | 0.0603 |
PF | 0.0778 |
JPF | 0.0232 |
表2 各种滤波比较
Table 2 RMSE comparisons with different filters
滤波 | 热效率标准误差 |
---|---|
KF | 0.0603 |
PF | 0.0778 |
JPF | 0.0232 |
粒子数 | RMSE | 运行时间 |
---|---|---|
50 | 0.0786/0.0231 | 2.3650/2.5360 |
100 | 0.0256/0.0157 | 2.4410/2.8600 |
150 | 0.0227/0.0123 | 2.4830/3.0600 |
200 | 0.0184/0.0099 | 2.8520/3.1840 |
300 | 0.0112/0.0073 | 3.3480/3.5290 |
500 | 0.0096/0.0045 | 3.9350/4.0370 |
表3 粒子滤波与联合粒子滤波对比
Table 3 Comparison of particle filtering with joint particle filtering(PF /JPF)
粒子数 | RMSE | 运行时间 |
---|---|---|
50 | 0.0786/0.0231 | 2.3650/2.5360 |
100 | 0.0256/0.0157 | 2.4410/2.8600 |
150 | 0.0227/0.0123 | 2.4830/3.0600 |
200 | 0.0184/0.0099 | 2.8520/3.1840 |
300 | 0.0112/0.0073 | 3.3480/3.5290 |
500 | 0.0096/0.0045 | 3.9350/4.0370 |
组数 | O | a 1 | a 2 | a 3 | a 1,2,3 |
---|---|---|---|---|---|
1 | 0 | 1 | 1 | 1.1458 | 1 |
2 | 3.66 | 1.2022 | 1.1987 | 1.0459 | 1.2 |
3 | 5.05 | 1.3021 | 1.2982 | 1.0079 | 1.3 |
4 | 6.03 | 1.4074 | 1.4039 | 0.9738 | 1.4 |
5 | 8.1 | 1.5928 | 1.5923 | 0.9247 | 1.6 |
6 | 9.6 | 1.7892 | 1.7952 | 0.8837 | 1.8 |
7 | 10.8 | 1.985 | 2.0009 | 0.851 | 2 |
8 | 11.75 | 2.1734 | 2.202 | 0.825 | 2.2 |
9 | 12.6 | 2.3749 | 2.4209 | 0.8018 | 2.4 |
附表1 过剩空气系数拟合
Appendix 1 Excess air coefficient fitting
组数 | O | a 1 | a 2 | a 3 | a 1,2,3 |
---|---|---|---|---|---|
1 | 0 | 1 | 1 | 1.1458 | 1 |
2 | 3.66 | 1.2022 | 1.1987 | 1.0459 | 1.2 |
3 | 5.05 | 1.3021 | 1.2982 | 1.0079 | 1.3 |
4 | 6.03 | 1.4074 | 1.4039 | 0.9738 | 1.4 |
5 | 8.1 | 1.5928 | 1.5923 | 0.9247 | 1.6 |
6 | 9.6 | 1.7892 | 1.7952 | 0.8837 | 1.8 |
7 | 10.8 | 1.985 | 2.0009 | 0.851 | 2 |
8 | 11.75 | 2.1734 | 2.202 | 0.825 | 2.2 |
9 | 12.6 | 2.3749 | 2.4209 | 0.8018 | 2.4 |
1 | 张伟勇 . 延迟焦化装置先进控制方法研究与应用[D]. 北京: 北京化工大学, 2008. |
Zhang W Y . Research and application of advanced control methods for delayed coking unit[D]. Beijing: Beijing University of Chemical Technology, 2008. | |
2 | 龚朝兵, 周雨泽, 宋金宝, 等 . 延迟焦化装置的能耗分析及节能优化实践[J]. 中外能源, 2013, 18( 1): 84- 88. |
Gong C B , Zhou Y Z , Song J B , et al . Energy consumption analysis and energy saving optimization practice of delayed coking unit[J]. Sino-Global Energy, 2013, 18( 1): 84- 88. | |
3 | 王培超 . 延迟焦化装置有效能分析[J]. 中外能源, 2013, 18( 3): 85- 88. |
Wang P C . Effective energy analysis of delayed coking unit[J]. Sino-Global Energy, 2013, 18( 3): 85- 88. | |
4 | Wang C S , Zhou Y , Liang Z J , et al . Heat transfer simulation and thermal efficiency analysis of new vertical heating furnace[J]. Case Studies in Thermal Engineering, 2019, 13( 4): 1- 7. |
5 | Qi J , Liu Z W , Wang X Y , et al . Compensation and simulation of restrictive memory least square method for BOD soft measurement mechanism model [R]. Beijing: Natural Computation, 2009. |
6 | 梁光川, 黄兴, 王勇, 等 . 燃气加热炉热效率计算方法的改进及应用[J]. 油气储运, 2016, ( 5): 560- 563. |
Liang G C , Huang X , Wang Y , et al . Improvement and application of calculation method for thermal efficiency of gas heating furnace[J]. Oil & Gas Storage and Transportation, 2016, ( 5): 560- 563. | |
7 | Hammersley J M , Morton K W . Poor man s Monte Carlo[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1954, 16( 1): 23- 38. |
8 | Gordon N , Salmond D , Smith A . Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proceedings F, 1993, 140( 2): 107- 113. |
9 | 袁泽剑, 郑南宁, 贾新春 . 高斯-厄米特粒子滤波器[J]. 电子学报, 2003, 31( 7): 970- 973. |
Yuan Z J , Zheng N N , Jia X C . Gauss-Hermit particle filter[J]. Acta Electronica Sinica, 2003, 31( 7): 970- 973. | |
10 | 莫以为, 萧德云 . 基于粒子滤波算法的混合系统监测与诊断[J]. 自动化学报, 2003, 29( 5): 641- 648. |
Mo Y W , Xiao D Y . Hybrid system monitoring and diagnosing based on particle filter algorithm[J]. Acta Automatica Sinica, 2003, 29( 5): 641- 648. | |
11 | 颉刚, 侯岩松, 王赓 . 延迟焦化装置先进控制系统的开发与应用[J]. 电脑知识与技术, 2011, 7( 3): 678- 680. |
Xie G , Hou Y S , Wang G . Development and application of advanced control system for delayed coking unit[J]. Computer Knowledge and Technology, 2011, 7( 3): 678- 680. | |
12 | 朱柏青 . 基于热效率的加热炉综合优化控制的应用研究[D]. 北京: 北京化工大学, 2013. |
Zhu B Q . Application research on comprehensive optimization control of heating furnace based on thermal efficiency[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
13 | 裴召华 . 提高管式加热炉热效率的措施[J]. 油气储运, 2009, 28( 11): 52- 54. |
Pei Z H . Measures to improve the thermal efficiency of tubular heating furnaces[J]. Oil & Gas Storage and Transportation, 2009, 28( 11): 52- 54. | |
14 | 杨光炯 . 管式炉辐射室传热计算——罗伯-依万斯与别洛康方法的比较[J]. 石油炼制, 1984, ( 12): 6- 12. |
Yang G J . Calculation of heat transfer in radiation chamber of tube furnace—Comparison of Rob-Evans and Belokan methods[J]. Petroleum Refining, 1984, ( 12): 6- 12. | |
15 | 曾祥龙 . 工业管式加热炉优化控制方法研究[D]. 北京: 北京化工大学, 2016. |
Zeng X L . Research on optimal control method of industrial tubular furnace[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
16 | 中国石油化工总公司 . 石油化工工艺管式炉效率测定法: SHF 0001—90 [S]. 北京: 中国石油化工总公司生产部, 1990. |
Group Sinopec . Method for measuring efficiency of tubular furnace in petrochemical process:SHF 0001—90 [S]. Beijing: Production Department of Sinopec Group, 1990. | |
17 | 蒋国芳 . 过剩空气系数对加热炉的影响[J]. 石油化工设备技术, 2002, 23( 5): 29- 31. |
Jiang G F . Influence of excess air coefficient on heating furnace[J]. Petrochemical Equipment Technology, 2002, 23( 5): 29- 31. | |
18 | 叶树珍, 张占渔 . 排烟热损失计算方法探讨[J]. 能源, 1983, 3( 1): 24- 26. |
Ye S Z , Zhang Z Y . Discussion on calculation method of heat loss of exhaust smoke[J]. Energy, 1983, 3( 1): 24- 26. | |
19 | 庄富山 . 加热炉热效率数学模型[J]. 计算技术与自动化, 1983, 3( 3): 21- 39. |
Zhuang F S . Mathematical model of heating furnace thermal efficiency[J]. Computing Technology and Automation, 1983, 3( 3): 21- 39. | |
20 | 王刚, 夏友山 . 管式加热炉排烟温度升高的原因与防治[J]. 设备管理与维护, 2018, 4( 7): 42- 43. |
Wang G , Xia Y S . Causes and prevention of temperature rise of flue gas in tube heating furnace[J]. Plant Maintenance Engineering, 2018, 4( 7): 42- 43. | |
21 | 卢时述, 周大军 . 炼油加热炉排烟热损数学模型的确定[J]. 工业炉, 2004, 26( 4): 33- 36. |
Lu S X , Zhou D J . Determination of mathematical model for heat loss of flue gas in refining heating furnace[J]. Industrial Furnace, 2004, 26( 4): 33- 36. | |
22 | 杨丹 . 卡尔曼滤波器设计及其应用研究[D]. 长沙: 湘潭大学, 2014. |
Yang D . Kalman filter design and its application[D]. Changsha: Xiangtan University, 2014. | |
23 | Kalman R E . A new approach to linear filtering and prediction problems[J]. Transactions of the ASME-Journal of Basic Engineering, 1960, 82(Series D): 35- 45. |
24 | Kalman R E , Bucy R S . New results in linear filtering and prediction theory[J]. Transactions of the ASME-Journal of Basic Engineering, 1961, 83(Series D): 95- 107. |
25 | Gordon N , Clapp T , Maskell S , et al . A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002, 50( 2): 174- 188. |
26 | Oppenheim G , Philippe A , Rigal J D . The particle filters and their applications [J]. Chemometrics and Intelligent Laboratory Systems, 2008, 91( 2): 87- 93. |
27 | Sun J , Blom H A P , Ellerbroek J , et al . Particle filter for aircraft mass estimation and uncer-tainty modeling[J]. Transportation Research Part C-Emerging Technologies, 2019, 105( 3): 145- 162. |
28 | Leeuwen V , Jan P . Particle filtering in geophysical systems [J]. Monthly Weather Review, 2009, 137( 12): 4089- 4114. |
29 | Xin W G , Guo Y X , Yu F W , et al . Particle filter-based prediction for anomaly detection in automatic surveillance[J]. IEEE Access, 2019, 7( 5): 107550-107559. |
30 | Kwok C , Fox D , Meila M . Real-time particle filters [J]. Proceedings of the IEEE, 2004, 92( 3): 469- 484. |
31 | Ya B X , Ke X , Jian W W , et al . Research on particle filter tracking method based on Kalman filter[C]// 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference. Xi an, 2018. |
32 | Moral P D , Guionnet A . On the stability of measure valued processes with applications to filtering[J]. Comptes Rendus de l Académie des Sciences - Series I – Mathematics, 1999, 329( 5): 429- 434. |
33 | Papavasiliou A . A uniformly convergent adaptive particle filter [J]. Journal of Applied Probability, 2004, 42( 4): 1053- 1068. |
[1] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[4] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[5] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[6] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[7] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[8] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[9] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
[10] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[11] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[12] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[13] | 史克年, 郑景元, 钱宇, 杨思宇. 基于马尔可夫链的蒸汽动力系统两阶段随机规划[J]. 化工学报, 2023, 74(2): 807-817. |
[14] | 陈家辉, 杨鑫泽, 陈顾中, 宋震, 漆志文. 以离子液体密度为例的分子性质预测模型建模方法探讨[J]. 化工学报, 2023, 74(2): 630-641. |
[15] | 王雪松, 曾祥宇, 薄翠梅, 汤舒淇, 董超, 李俊, 张泉灵, 金晓明, 叶胜利. PTFE间歇聚合反应过程变周期动态经济优化控制[J]. 化工学报, 2022, 73(9): 3973-3982. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||