化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5094-5101.DOI: 10.11949/0438-1157.20210427
收稿日期:
2021-03-29
修回日期:
2021-06-01
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
刘志刚
作者简介:
刘志刚(1973—),男,研究员,基金资助:
Zhigang LIU(),Kaiming DONG,Mingming LYU,Can JI,Yake JIANG
Received:
2021-03-29
Revised:
2021-06-01
Online:
2021-10-05
Published:
2021-10-05
Contact:
Zhigang LIU
摘要:
采用微观粒子图像测速法(Micro-PIV),实验研究了Reynolds数(Re)=50~800范围内去离子水在微肋直径D=0.4 mm微肋阵内的绕流流场特性,获得了不同Re下错排和顺排微肋阵内的流线分布与速度场,分析了Re与微肋排布方式对旋涡结构、流速分布等流场特性的影响规律。研究结果表明,在Re=50~700范围内,错排和顺排微肋阵内均出现涡结构,当Re=800时错排微肋阵内开始发生旋涡脱落;错排微肋阵内旋涡长度随着Re的增大而增加,而对于顺排微肋阵,在低Re时旋涡长度随着Re的增大而增加,当Re≥300后,旋涡长度保持微肋间距不再增加;顺排微肋阵内主流区顺流速度较错排微肋阵大,而错排微肋阵内横向速度大于顺排微肋阵且最大值比顺排微肋阵高约25%,微肋错排布置增强了流体的掺混。
中图分类号:
刘志刚,董开明,吕明明,季璨,江亚柯. 基于微观粒子图像测速法的微肋阵通道内流场特性研究[J]. 化工学报, 2021, 72(10): 5094-5101.
Zhigang LIU,Kaiming DONG,Mingming LYU,Can JI,Yake JIANG. Study on characteristics of flow field in micro pin fin array based on Micro-PIV[J]. CIESC Journal, 2021, 72(10): 5094-5101.
排布方式 | L/mm | W/mm | H/mm | Linlet/mm | D/mm | ST/mm | SL/mm |
---|---|---|---|---|---|---|---|
错排 | 27.2 | 5.2 | 0.2 | 5 | 0.4 | 0.8 | 1.2 |
顺排 | 27.2 | 5.2 | 0.2 | 5 | 0.4 | 0.8 | 1.2 |
表1 微肋阵实验段几何参数
Table 1 Geometrical size of the micro pin fin arrays
排布方式 | L/mm | W/mm | H/mm | Linlet/mm | D/mm | ST/mm | SL/mm |
---|---|---|---|---|---|---|---|
错排 | 27.2 | 5.2 | 0.2 | 5 | 0.4 | 0.8 | 1.2 |
顺排 | 27.2 | 5.2 | 0.2 | 5 | 0.4 | 0.8 | 1.2 |
图9 Re=300中间排微肋尾流区旋涡中心截面的顺流速度与横向速度分布
Fig.9 Distributions of dimensionless streamwise and transverse velocities along line through the vortex center in the wake of micro pin fin in the middle of the micro pin fin arrays at Re=300
1 | Wang Y Y, Shin J H, Woodcock C, et al. Experimental and numerical study about local heat transfer in a microchannel with a pin fin[J]. International Journal of Heat and Mass Transfer, 2018, 121: 534-546. |
2 | Peles Y, Koşar A, Mishra C, et al. Forced convective heat transfer across a pin fin micro heat sink[J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3615-3627. |
3 | Tullius J F, Tullius T K, Bayazitoglu Y. Optimization of short micro pin fins in minichannels[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 3921-3932. |
4 | Mohammadi A, Koşar A. Review on heat and fluid flow in micro pin fin heat sinks under single-phase and two-phase flow conditions[J]. Nanoscale and Microscale Thermophysical Engineering, 2018, 22(3): 153-197. |
5 | Galvis E, Jubran B A, Behdinan F X K, et al. Numerical modeling of pin-fin micro heat exchangers[J]. Heat and Mass Transfer, 2007, 44(6): 659-666. |
6 | Liu M H, Liu D, Xu S, et al. Experimental study on liquid flow and heat transfer in micro square pin fin heat sink[J]. International Journal of Heat and Mass Transfer, 2011, 54(25/26): 5602-5611. |
7 | Liu Z G, Guan N, Takei M. An experimental investigation of single-phase heat transfer in 0.045 mm to 0.141 mm microtubes[J]. Nanoscale and Microscale Thermophysical Engineering, 2007, 11(3/4): 333-349. |
8 | Zhou X, Dong B, Chen C, et al. A thermal LBM-LES model in body-fitted coordinates: flow and heat transfer around a circular cylinder in a wide Reynolds number range[J]. International Journal of Heat and Fluid Flow, 2019, 77: 113-121. |
9 | 魏进家, 张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1): 97-108. |
Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces[J]. CIESC Journal, 2016, 67(1): 97-108. | |
10 | Zhu Y Y, Antao D S, Chu K H, et al. Surface structure enhanced microchannel flow boiling[J]. Journal of Heat Transfer, 2016, 138(9): 091501. |
11 | 杜保周, 孔令健, 郭保仓, 等. 微肋阵通道内流动沸腾CHF特性[J]. 化工学报, 2018, 69(5): 1989-1998. |
Du B Z, Kong L J, Guo B C, et al. Critical heat flux characteristics during flow boiling in a micro channel with micro pin fins[J]. CIESC Journal, 2018, 69(5): 1989-1998. | |
12 | Yu X, Woodcock C, Wang Y, et al. A comparative study of flow boiling in a microchannel with piranha pin fins[J]. Journal of Heat Transfer, 2016, 138(11): 111502. |
13 | Woodcock C, Ng'Oma C, Sweet M, et al. Ultra-high heat flux dissipation with Piranha pin fins[J]. International Journal of Heat and Mass Transfer, 2019, 128: 504-515. |
14 | Lorenzini D, Joshi Y. Flow boiling heat transfer in silicon microgaps with multiple hotspots and variable pin fin clustering[J]. Physics of Fluids, 2019, 31(10): 102002. |
15 | Lorenzini D, Joshi Y. Numerical modeling and experimental validation of two-phase microfluidic cooling in silicon devices for vertical integration of microelectronics[J]. International Journal of Heat and Mass Transfer, 2019, 138: 194-207. |
16 | Shim Y M, Richards P J, Sharma R N. Turbulent structures in the flow field of plane jet impinging on a circular cylinder[J]. Experimental Thermal and Fluid Science, 2014, 57: 27-39. |
17 | Ozturk N A, Akkoca A, Sahin B. Flow details of a circular cylinder mounted on a flat plate[J]. Journal of Hydraulic Research, 2008, 46(3): 344-355. |
18 | Zovatto L, Pedrizzetti G. Flow about a circular cylinder between parallel walls[J]. Journal of Fluid Mechanics, 2001, 440: 1-25. |
19 | Armellini A, Casarsa L, Giannattasio P. Separated flow structures around a cylindrical obstacle in a narrow channel[J]. Experimental Thermal and Fluid Science, 2009, 33(4): 604-619. |
20 | Dobrosel'skii K G. Use of the PIV method for investigation of motion near a cylinder in transverse flow[J]. Journal of Engineering Physics and Thermophysics, 2016, 89(3): 695-701. |
21 | Goharzadeh A, Molki A. Measurement of fluid velocity development behind a circular cylinder using particle image velocimetry (PIV)[J]. European Journal of Physics, 2015, 36(1): 015001. |
22 | Oruç V, Akilli H, Sahin B. PIV measurements on the passive control of flow past a circular cylinder[J]. Experimental Thermal and Fluid Science, 2016, 70: 283-291. |
23 | Ozturk N A, Ozalp C, Canpolat C, et al. PIV measurements of flow through normal triangular cylinder arrays in the passage of a model plate-tube heat exchanger[J]. International Journal of Heat and Fluid Flow, 2016, 61: 531-544. |
24 | Armellini A, Casarsa L, Giannattasio P. Low Reynolds number flow in rectangular cooling channels provided with low aspect ratio pin fins[J]. International Journal of Heat and Fluid Flow, 2010, 31(4): 689-701. |
25 | Stogiannis I A, Passos A D, Mouza A A, et al. Flow investigation in a microchannel with a flow disturbing rib[J]. Chemical Engineering Science, 2014, 119: 65-76. |
26 | Jung J, Kuo C J, Peles Y, et al. The flow field around a micropillar confined in a microchannel[J]. International Journal of Heat and Fluid Flow, 2012, 36: 118-132. |
27 | Xia G D, Chen Z, Cheng L X, et al. Micro-PIV visualization and numerical simulation of flow and heat transfer in three micro pin-fin heat sinks[J]. International Journal of Thermal Sciences, 2017, 119: 9-23. |
28 | Liu Z G, Guan N, Zhang C W, et al. The flow resistance and heat transfer characteristics of micro pin-fins with different cross-sectional shapes[J]. Nanoscale and Microscale Thermophysical Engineering, 2015, 19(3): 221-243. |
29 | Liu Z G, Wang Z L, Zhang C W, et al. Flow resistance and heat transfer characteristics in micro-cylinders-group[J]. Heat and Mass Transfer, 2013, 49(5): 733-744. |
30 | Kong L J, Liu Z G, Jia L, et al. Experimental study on flow and heat transfer characteristics at onset of nucleate boiling in micro pin fin heat sinks[J]. Experimental Thermal and Fluid Science, 2020, 115: 109946. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[3] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[4] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[5] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[6] | 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144. |
[7] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[8] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[9] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[10] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
[11] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[12] | 范怡平, 卢春喜. 离心力场-移动床耦合气固分离装备的研究进展[J]. 化工学报, 2023, 74(1): 157-169. |
[13] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
[14] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[15] | 董宜放, 于樱迎, 胡学功, 裴刚. 电场对竖直微槽润湿及毛细流动特性影响[J]. 化工学报, 2022, 73(7): 2952-2961. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 351
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 425
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||