化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2952-2961.DOI: 10.11949/0438-1157.20220427
董宜放1,2,3(),于樱迎2,3,胡学功2,4(),裴刚1
收稿日期:
2022-03-25
修回日期:
2022-05-14
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
胡学功
作者简介:
董宜放(1989—),男,博士研究生,基金资助:
Yifang DONG1,2,3(),Yingying YU2,3,Xuegong HU2,4(),Gang PEI1
Received:
2022-03-25
Revised:
2022-05-14
Online:
2022-07-05
Published:
2022-08-01
Contact:
Xuegong HU
摘要:
竖直微槽群毛细结构广泛应用在重力热管、蒸发器等散热设备内,但受重力等因素影响易达到毛细极限。引入电场的主动强化方式来提高竖直微槽的毛细极限,并通过实验和建立数学模型研究电场对竖直微槽内液体润湿及毛细流动特性的影响。结果表明,电场可以提高竖直微槽内液体润湿高度,当电场为5.0 kV时与无电场时相比,润湿高度强化比可达到30.0%。同时,电场作用下流体在微槽道内的毛细润湿流动呈分段效应:润湿流动初期,润湿高度与时间的1/2次方呈线性关系,即h-t1/2,润湿速率与润湿高度的倒数呈线性关系,即v-1/h;润湿流动中后期,润湿高度与时间的1/3次方呈线性关系,即h-t1/3,润湿速率与润湿高度平方的倒数呈线性关系,即v-1/h2,且润湿速率随时间呈下降趋势。
中图分类号:
董宜放, 于樱迎, 胡学功, 裴刚. 电场对竖直微槽润湿及毛细流动特性影响[J]. 化工学报, 2022, 73(7): 2952-2961.
Yifang DONG, Yingying YU, Xuegong HU, Gang PEI. Electric field effect on wetting and capillary flow characteristics in vertical microgrooves[J]. CIESC Journal, 2022, 73(7): 2952-2961.
变量 | 数值 |
---|---|
液体密度 | 997 |
液体表面张力 | 0.072 |
液体动力黏度 | 8.9×10-4 |
液体介电常数 | 78.4 |
蒸汽介电常数 | |
电导率 | <1×10-6 |
表1 工质物性
Table 1 Physical properties
变量 | 数值 |
---|---|
液体密度 | 997 |
液体表面张力 | 0.072 |
液体动力黏度 | 8.9×10-4 |
液体介电常数 | 78.4 |
蒸汽介电常数 | |
电导率 | <1×10-6 |
1 | Deng D X, Tang Y, Zeng J, et al. Characterization of capillary rise dynamics in parallel micro V-grooves[J]. International Journal of Heat and Mass Transfer, 2014, 77: 311-320. |
2 | Wang H, Pan Z H, Garimella S V. Numerical investigation of heat and mass transfer from an evaporating meniscus in a heated open groove[J]. International Journal of Heat and Mass Transfer, 2011, 54(13/14): 3015-3023. |
3 | Ghajar M, Darabi J. Evaporative heat transfer analysis of a micro loop heat pipe with rectangular grooves[J]. International Journal of Thermal Sciences, 2014, 79: 51-59. |
4 | 胡学功, 颜晓虹, 赵耀华. 微槽群蒸发器在电子芯片冷却方面的应用[J]. 化工学报, 2005, 56(3): 412-416. |
Hu X G, Yan X H, Zhao Y H. Application of micro capillary groove evaporator to electronic chip cooling[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(3): 412-416. | |
5 | 王涛, 胡学功, 唐大伟. 微通道-微槽群中间换热器特性实验研究[J]. 强激光与粒子束, 2007, 19(4): 581-584. |
Wang T, Hu X G, Tang D W. Experimental study on characteristics of an microchannels-microgrooves middle heat exchanger[J]. High Power Laser and Particle Beams, 2007, 19(4): 581-584. | |
6 | Catton I, Stroes G R. A semi-analytical model to predict the capillary limit of heated inclined triangular capillary grooves[J]. Journal of Heat Transfer, 2002, 124(1): 162-168. |
7 | Suman B, De S, DasGupta S. A model of the capillary limit of a micro heat pipe and prediction of the dry-out length[J]. International Journal of Heat and Fluid Flow, 2005, 26(3): 495-505. |
8 | 郭朝红, 胡学功, 唐大伟. 竖直矩形微槽轴向流动理论模型[J]. 工程热物理学报, 2010, 31(10): 1709-1712. |
Guo C H, Hu X G, Tang D W. An axial flow model for vertical rectangular microgrooves[J]. Journal of Engineering Thermophysics, 2010, 31(10): 1709-1712. | |
9 | Nie X L, Hu X G, Tang D W. Modeling study on axial wetting length of meniscus in vertical rectangular microgrooves[J]. Applied Thermal Engineering, 2013, 52(2): 615-622. |
10 | Anand S, De S, Dasgupta S. Experimental and theoretical study of axial dryout point for evaporation from V-shaped microgrooves[J]. International Journal of Heat and Mass Transfer, 2002, 45(7): 1535-1543. |
11 | Rye R R, Yost F G, O'Toole E J. Capillary flow in irregular surface grooves[J]. Langmuir, 1998, 14(14): 3937-3943. |
12 | Ponomarenko A, Quéré D, Clanet C. A universal law for capillary rise in corners[J]. Journal of Fluid Mechanics, 2011, 666: 146-154. |
13 | Yu D, Hu X G, Guo C H, et al. Investigation on meniscus shape and flow characteristics in open rectangular microgrooves heat sinks with micro-PIV[J]. Applied Thermal Engineering, 2013, 61(2): 716-727. |
14 | Suman B, Hoda N. Effect of variations in thermophysical properties and design parameters on the performance of a V-shaped micro grooved heat pipe[J]. International Journal of Heat and Mass Transfer, 2005, 48(10): 2090-2101. |
15 | 胡学功, 唐大伟. 竖直毛细微槽群热沉中蒸发液体的干涸特性[J]. 化工学报, 2007, 58(3): 575-580. |
Hu X G, Tang D W. Dryout characteristics of evaporating liquid in vertical capillary microgrooves heat sink[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(3): 575-580. | |
16 | 胡学功, 白莉, 王照亮, 等. 竖直矩形毛细微槽群轴向干涸高度的理论分析[J]. 中国石油大学学报(自然科学版), 2007, 31(3): 119-123. |
Hu X G, Bai L, Wang Z L, et al. Theoretical analysis of axial dryout point height in vertical rectangular capillary microgrooves[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(3): 119-123. | |
17 | Chen Y P, Zhang C B, Shi M H, et al. Study on flow and heat transfer characteristics of heat pipe with axial “Ω”-shaped microgrooves[J]. International Journal of Heat and Mass Transfer, 2009, 52(3/4): 636-643. |
18 | Sheu T S, Ding P P, Lo I M, et al. Effect of surface characteristics on capillary flow in triangular microgrooves[J]. Experimental Thermal and Fluid Science, 2000, 22(1/2): 103-110. |
19 | Zhou W B, Hu X G, He Y, et al. Study on axial wetting length and evaporating heat transfer in rectangular microgrooves with superhydrophilic nano-textured surfaces for two-phase heat transfer devices[J]. Energy Conversion and Management, 2019, 200: 112098. |
20 | Saad I, Maalej S, Zaghdoudi M C. Numerical study of the electrohydrodynamic effects on the two-phase flow within an axially grooved flat miniature heat pipe[J]. International Journal of Heat and Mass Transfer, 2017, 107: 244-263. |
21 | Yu Z Q, Hallinani K, Bhagat W, et al. Electrohydrodynamically augmented micro heat pipes[J]. Journal of Thermophysics and Heat Transfer, 2002, 16(2): 180-186. |
22 | Lackowski M, Krupa A, Butrymowicz D. Dielectrophoresis flow control in microchannels[J]. Journal of Electrostatics, 2013, 71(5): 921-925. |
23 | 常楚鑫, 徐黎婷, 殷嘉伦, 等. 浸没状态下的低压电润湿行为研究[J]. 化工学报, 2022, 73(4): 1673-1682. |
Chang C X, Xu L T, Yin J L, et al. Study on low voltage electrowetting behavior under immersion state[J]. CIESC Journal, 2022, 73(4): 1673-1682. | |
24 | Basu M, Joshi V P, Das S, et al. Analysis of augmented droplet transport during electrowetting over triangular coplanar electrode array[J]. Journal of Electrostatics, 2021, 109: 103541. |
25 | 谭杰, 陈贵军, 姜东岳. 基于介电润湿的可控液滴撞击数值研究[J]. 工程热物理学报, 2021, 42(11): 2869-2872. |
Tan J, Chen G J, Jiang D Y. Numerical study of controllable droplet impact based on electrowetting-on-dielectric[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2869-2872. | |
26 | 刘镇, 许雄文, 刘金平, 等. 液滴在圆形电场中润湿性变化研究[J]. 化学工程, 2021, 49(12): 49-53. |
Liu Z, Xu X W, Liu J P, et al. Change of wettability of droplet in circular electric field[J]. Chemical Engineering (China), 2021, 49(12): 49-53. | |
27 | 陈晓杰, 苏宇. 不同润滑液的电润湿性能研究[J]. 润滑与密封, 2021, 46(2): 50-55, 64. |
Chen X J, Su Y. Electrowetting performance research of different lubricants[J]. Lubrication Engineering, 2021, 46(2): 50-55, 64. | |
28 | Fan M Y, Zhou R, Jiang H W, et al. Effect of liquid conductivity on optical and electric performances of the electrowetting display system with a thick dielectric layer[J]. Results in Physics, 2020, 16: 102904. |
29 | Ahmad I, Pathak M, Khan M K. Electrowetting induced microdroplet oscillation over interdigitated electrodes for hotspot cooling applications[J]. Experimental Thermal and Fluid Science, 2021, 125: 110372. |
30 | Chakraborty M, Ghosh A, Dasgupta S. Enhanced microcooling by electrically induced droplet oscillation[J]. RSC Advances, 2014, 4: 1074-1082. |
31 | Wikramanayake E D, Bahadur V. Electrowetting-based enhancement of droplet growth dynamics and heat transfer during humid air condensation[J]. International Journal of Heat and Mass Transfer, 2019, 140: 260-268. |
32 | Izadi R, Merdasi A, Moosavi A. Heat transfer of power-law fluids under electrowetting actuation in structured microchannels[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105803. |
33 | Suman B. A steady state model and maximum heat transport capacity of an electrohydrodynamically augmented micro-grooved heat pipe[J]. International Journal of Heat and Mass Transfer, 2006, 49(21/22): 3957-3967. |
34 | Saad I, Maalej S, Zaghdoudi M C. Modeling of the EHD effects on hydrodynamics and heat transfer within a flat miniature heat pipe including axial capillary grooves[J]. Journal of Electrostatics, 2017, 85: 61-78. |
35 | Chang F L, Hung Y M. Dielectric liquid pumping flow in optimally operated micro heat pipes[J]. International Journal of Heat and Mass Transfer, 2017, 108: 257-270. |
36 | 郭磊, 刁彦华, 赵耀华, 等. 电场强化微槽道结构毛细芯蒸发器的传热特性[J]. 化工学报, 2014, 65(S1): 144-151. |
Guo L, Diao Y H, Zhao Y H, et al. Heat transfer characteristics of evaporator with rectangular microgrooves under electric field[J]. CIESC Journal, 2014, 65(S1): 144-151. | |
37 | 于樱迎, 唐瑾晨, 胡学功. 电场作用下矩形微槽群润湿特性数值分析[J]. 化工学报, 2018, 69(10): 4216-4223. |
Yu Y Y, Tang J C, Hu X G. Theoretical analysis of wetting characteristics in rectangular microgrooves under electric field[J]. CIESC Journal, 2018, 69(10): 4216-4223. | |
38 | Yu Y Y, Hu X G, Tang J C, et al. Experimental study on EHD effects on wetting characteristics of liquid in open rectangular microgrooves[J]. Applied Thermal Engineering, 2019, 162: 114178. |
39 | 于樱迎, 唐瑾晨, 胡学功. 电场对竖直矩形微槽群润湿及表面温度的影响[J]. 化工进展, 2020, 39(1): 26-33. |
Yu Y Y, Tang J C, Hu X G. Electric field effects on wettability and temperature distribution of open rectangular microgrooves[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 26-33. | |
40 | Fang X Z, Hu X G, Yu D, et al. Experimental study of the heat transfer characteristic in vertical rectangular capillary microgrooves heat sink under an electric field[C]//Proceedings of ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. Sapporo, Japan, 2013. |
41 | Rye R R, Mann J A, Yost F G. The flow of liquids in surface grooves[J]. Langmuir, 1996, 12(2): 555-565. |
42 | Stratton J A. Electromagnetic Theory[M]. New York: McGraw-Hill Book Company, Inc., 1941. |
43 | Luo H, Gu G, Shang W, et al. The water droplet with huge charge density excited by triboelectric nanogenerator for water sterilization[J]. Nanotechnology, 2021, 32(41): 415404. |
44 | Gao M, Quan X J, Cheng P. An experimental investigation on EHD effects in the thin-film region of an evaporating meniscus[J]. International Communications in Heat and Mass Transfer, 2014, 56: 159-164. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[6] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[7] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[8] | 赵健, 周兴超, 夏丹, 董航. 机械搅拌对原油储罐射流加热过程传热特性的影响规律研究[J]. 化工学报, 2023, 74(5): 1982-1999. |
[9] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[10] | 王倩倩, 刘明言, 马永丽. 水中超声波脱气的效应研究[J]. 化工学报, 2023, 74(4): 1693-1702. |
[11] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[12] | 张浩, 徐惠斌, 高健, 刘帝宏, 周泽华. Geldart-D类湿颗粒倾斜落料行为及其强化[J]. 化工学报, 2023, 74(4): 1519-1527. |
[13] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[14] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[15] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 130
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||