化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5717-5725.DOI: 10.11949/0438-1157.20210820
收稿日期:
2021-06-21
修回日期:
2021-09-01
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
陆馨
作者简介:
曹玉柱(1996—),男,硕士研究生,基金资助:
Yuzhu CAO1(),Xin LU1(),Litong WANG1,Manlin YUAN1,Zhong XIN1,2
Received:
2021-06-21
Revised:
2021-09-01
Online:
2021-11-05
Published:
2021-11-12
Contact:
Xin LU
摘要:
以腰果酚、十八胺和多聚甲醛为原料合成出生物基苯并嗪单体,以单宁酸为固化剂,采用差示扫描量热分析技术和红外光谱考察了苯并嗪单体的热固化行为,结果表明单宁酸可以有效降低苯并嗪的开环固化温度。在钢片表面首先制备聚苯并嗪涂层作为底漆,再通过在涂层中掺杂氨基修饰纤维素纳米晶制备面漆,构建出静态水接触角为161.1°±2.9°的生物基超疏水防腐蚀涂层(PBTC)。该超疏水涂层表现出良好的耐高低温性能和耐刮擦性。电化学测试结果表明PBTC涂层在NaCl水溶液中浸泡30天后仍然具有良好的防腐蚀性能。
中图分类号:
曹玉柱,陆馨,王立通,袁满林,辛忠. 生物基聚苯并嗪/纤维素纳米晶超疏水防腐蚀涂层的制备及性能[J]. 化工学报, 2021, 72(11): 5717-5725.
Yuzhu CAO,Xin LU,Litong WANG,Manlin YUAN,Zhong XIN. Preparation and anticorrosion properties of bio-based polybenzoxazine/cellulose nanocrystals superhydrophobic coating[J]. CIESC Journal, 2021, 72(11): 5717-5725.
Sample | T1% /℃ | T5% /℃ | T10% /℃ | Char yield at 800℃/% |
---|---|---|---|---|
PBz | 269 | 315 | 341 | 6.33 |
PBT | 250 | 305 | 334 | 7.40 |
PBTC | 252 | 306 | 334 | 22.39 |
表1 PBz、PBT和PBTC涂层的热稳定性
Table 1 Thermal stability of PBz, PBT and PBTC coatings
Sample | T1% /℃ | T5% /℃ | T10% /℃ | Char yield at 800℃/% |
---|---|---|---|---|
PBz | 269 | 315 | 341 | 6.33 |
PBT | 250 | 305 | 334 | 7.40 |
PBTC | 252 | 306 | 334 | 22.39 |
图10 PBT(a1,a2)和PBTC(b1,b2)涂层在3.5% NaCl溶液中浸泡30天的Bode阻抗图和相角图
Fig.10 Bode impedance plots and phase angle plots of PBT (a1,a2) and PBTC (b1,b2) coatings during 30 days immersion in 3.5% NaCl solution
Samples | Time/d | Chi-Squared/% | CPEc | Rc/ (Ω·cm2) | CPEdl | Rct/ (Ω·cm2) | ||
---|---|---|---|---|---|---|---|---|
Y0/(Ω-1·cm-2·sn) | n | Y0/(Ω-1·cm-2·sn) | n | |||||
PBT | 0 | 0.06 | 1.42×10-10 | 0.98 | 1.11×1011 | — | — | — |
10 | 0.07 | 1.42×10-10 | 0.98 | 1.19×107 | 5.65×10-8 | 0.65 | 8.64×107 | |
20 | 0.46 | 1.67×10-10 | 0.97 | 4.33×106 | 3.99×10-7 | 0.51 | 6.20×106 | |
30 | 0.36 | 1.84×10-10 | 0.95 | 7.89×105 | 1.78×10-7 | 0.58 | 1.06×106 | |
PBTC | 0 | 0.67 | 9.78×10-11 | 0.98 | 2.06×1012 | — | — | — |
10 | 0.95 | 7.81×10-11 | 0.98 | 4.00×1010 | 1.97×10-11 | 0.62 | 4.31×1011 | |
20 | 0.85 | 1.42×10-10 | 0.98 | 3.27×1010 | 1.37×10-10 | 0.58 | 7.02×109 | |
30 | 0.12 | 1.93×10-10 | 0.98 | 6.78×109 | 4.34×10-9 | 0.58 | 1.24×109 |
表2 PBT和PBTC涂层的EIS结果拟合得到的电化学参数
Table 2 Values of electrochemical parameters fitted from EIS results of PBT and PBTC coatings
Samples | Time/d | Chi-Squared/% | CPEc | Rc/ (Ω·cm2) | CPEdl | Rct/ (Ω·cm2) | ||
---|---|---|---|---|---|---|---|---|
Y0/(Ω-1·cm-2·sn) | n | Y0/(Ω-1·cm-2·sn) | n | |||||
PBT | 0 | 0.06 | 1.42×10-10 | 0.98 | 1.11×1011 | — | — | — |
10 | 0.07 | 1.42×10-10 | 0.98 | 1.19×107 | 5.65×10-8 | 0.65 | 8.64×107 | |
20 | 0.46 | 1.67×10-10 | 0.97 | 4.33×106 | 3.99×10-7 | 0.51 | 6.20×106 | |
30 | 0.36 | 1.84×10-10 | 0.95 | 7.89×105 | 1.78×10-7 | 0.58 | 1.06×106 | |
PBTC | 0 | 0.67 | 9.78×10-11 | 0.98 | 2.06×1012 | — | — | — |
10 | 0.95 | 7.81×10-11 | 0.98 | 4.00×1010 | 1.97×10-11 | 0.62 | 4.31×1011 | |
20 | 0.85 | 1.42×10-10 | 0.98 | 3.27×1010 | 1.37×10-10 | 0.58 | 7.02×109 | |
30 | 0.12 | 1.93×10-10 | 0.98 | 6.78×109 | 4.34×10-9 | 0.58 | 1.24×109 |
1 | Nuruddin M, Chowdhury R A, Szeto R, et al. Structure–property relationship of cellulose nanocrystal–polyvinyl alcohol thin films for high barrier coating applications[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12472-12482. |
2 | 徐峻, 高艺, 吴祺祺, 等. 纤维素纳米晶的改性对其晶体结构及性能的影响[J]. 高分子材料科学与工程, 2021, 37(3): 66-71, 78. |
Xu J, Gao Y, Wu Q Q, et al. Effect of modification of cellulose nanocrystals on crystal structure and properties[J]. Polymer Materials Science & Engineering, 2021, 37(3): 66-71, 78. | |
3 | 吴开丽, 韩陈晓, 于娟娟. 纤维素纳米晶的制备及应用研究进展[J]. 造纸科学与技术, 2020, 39(4): 9-13. |
Wu K L, Han C X, Yu J J. Research progress on the preparation and application of cellulose nanocrystals[J]. Paper Science & Technology, 2020, 39(4): 9-13. | |
4 | 汤浩, 陈照峰, 邱宇航, 等. KH550改性纳米晶纤维素增强三元乙丙橡胶[J]. 宇航材料工艺, 2020, 50(4): 44-48. |
Tang H, Chen Z F, Qiu Y H, et al. Reinforcement of ethylene propylene diene monomer by nanocrystalline cellulose modified KH550[J]. Aerospace Materials & Technology, 2020, 50(4): 44-48. | |
5 | Lee Y, Park S, Ha K. Preparation and properties of eco-friendly polyurethane nanocomposites using cellulose nanocrystals with amino group as fillers[J]. Polymer Korea, 2020, 44(3): 397-407. |
6 | Wang X F, Gou X L, Guo Z G. Robust superhydrophobic polyurea@cellulose nanocrystal coating[J]. New Journal of Chemistry, 2020, 44(27): 11739-11745. |
7 | Huang J D, Lyu S Y, Fu F, et al. Green preparation of a cellulose nanocrystals/polyvinyl alcohol composite superhydrophobic coating[J]. RSC Advances, 2017, 7(33): 20152-20159. |
8 | Lyu Y, Ishida H. Natural-sourced benzoxazine resins, homopolymers, blends and composites: a review of their synthesis, manufacturing and applications[J]. Progress in Polymer Science, 2019, 99: 101168. |
9 | Yagci Y, Kiskan B, Ghosh N N. Recent advancement on polybenzoxazine—A newly developed high performance thermoset[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(21): 5565-5576. |
10 | Li X Y, Zhao S P, Hu W H, et al. Robust superhydrophobic surface with excellent adhesive properties based on benzoxazine/epoxy/mesoporous SiO2[J]. Applied Surface Science, 2019, 481: 374-378. |
11 | Zachariah S, Chuo T W, Liu Y L. Crosslinked polybenzoxazine coatings with hierarchical surface structures from a biomimicking process exhibiting high robustness and anticorrosion performance[J]. Polymer, 2018, 155: 168-176. |
12 | Huang J, Lou C, Xu D, et al. Cardanol-based polybenzoxazine superhydrophobic coating with improved corrosion resistance on mild steel[J]. Progress in Organic Coatings, 2019, 136: 105191. |
13 | Lou C, Zhang R, Lu X, et al. Facile fabrication of epoxy/polybenzoxazine based superhydrophobic coating with enhanced corrosion resistance and high thermal stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562: 8-15. |
14 | 朱慧斌. 高性能苯并嗪超疏水复合材料制备与性能研究[D]. 太原: 中北大学, 2018. |
Zhu H B. Preparation and properties of superhydrophobic composite materials with high performance of benzoxazine[D]. Taiyuan: North University of China, 2018. | |
15 | 张心湄. 腰果酚型苯并嗪聚合物的制备及其性能研究[D]. 福州: 福建师范大学, 2019. |
Zhang X M. Preparation and properties of cardanol benzoxazine polymers[D]. Fuzhou: Fujian Normal University, 2019. | |
16 | Renaud A, Bonnaud L, Dumas L, et al. A benzoxazine/substituted borazine composite coating: a new resin for improving the corrosion resistance of the pristine benzoxazine coating applied on aluminum[J]. European Polymer Journal, 2018, 109: 460-472. |
17 | Caldona E B, de Leon A C C, Thomas P G, et al. Superhydrophobic rubber-modified polybenzoxazine/SiO2 nanocomposite coating with anticorrosion, anti-ice, and superoleophilicity properties[J]. Industrial & Engineering Chemistry Research, 2017, 56(6): 1485-1497. |
18 | Bai W B, Lin H M, Chen K H, et al. Eco-friendly stable cardanol-based benzoxazine modified superhydrophobic cotton fabrics for oil-water separation[J]. Separation and Purification Technology, 2020, 253: 117545. |
19 | Zhang W Z, Jiang N, Zhang T T. Synthesis and properties of corresponding polymers of urushiol-based benzoxazine monomers modified by silane[J]. International Journal of Polymer Analysis and Characterization, 2021, 26(3): 265-276. |
20 | Appavoo D, Amarnath N, Lochab B. Cardanol and eugenol sourced sustainable non-halogen flame retardants for enhanced stability of renewable polybenzoxazines[J]. Frontiers in Chemistry, 2020, 8: 711. |
21 | Zhang L, Zhu Y J, Li D, et al. Preparation and characterization of fully renewable polybenzoxazines from monomers containing multi-oxazine rings[J]. RSC Advances, 2015, 5(117): 96879-96887. |
22 | Gnanapragasam S, Krishnan S, Arumugam H, et al. Synthesis and characterization of a novel high-performance benzoxazine from benzaldehyde-based bisphenol[J]. Advances in Polymer Technology, 2018, 37(8): 3056-3065. |
23 | Sharma P, Kumar D, Roy P K. Enhancing the processibility of high temperature polymerizing cardanol derived benzoxazines using eco-friendly curing accelerators[J]. Polymer, 2018, 138: 343-351. |
24 | Zhang L, Mao J L, Wang S, et al. Meta-phenylenediamine formaldehyde oligomer: a new accelerator for benzoxazine resin[J]. Reactive and Functional Polymers, 2017, 121: 51-57. |
25 | Espinosa M A, Cádiz V, Galià M. Synthesis and characterization of benzoxazine-based phenolic resins: crosslinking study[J]. Journal of Applied Polymer Science, 2003, 90(2): 470-481. |
26 | Thirukumaran P, Sathiyamoorthi R, Shakila Parveen A, et al. New benzoxazines from renewable resources for green composite applications[J]. Polymer Composites, 2016, 37(2): 573-582. |
27 | Kotzebue L R V, Ribeiro F W M, Sombra V G, et al. Spectral and thermal studies on the synthesis and catalyzed oligomerization of novel cardanol-based benzoxazines[J]. Polymer, 2016, 92: 189-200. |
28 | Yee Low H, Ishida H. Structural effects of phenols on the thermal and thermo-oxidative degradation of polybenzoxazines[J]. Polymer, 1999, 40(15): 4365-4376. |
29 | Pan C C, Wang X Z, Behnamian Y, et al. Monododecyl phosphate film on LY12 aluminum alloy: pH-controlled self-assembly and corrosion resistance[J]. Journal of the Electrochemical Society, 2020, 167(16): 161510. |
30 | Jiang D, Xia X C, Hou J, et al. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy[J]. Chemical Engineering Journal, 2019, 373: 285-297. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[4] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[5] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[6] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[7] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[8] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[9] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[10] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[11] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[12] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[13] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[14] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[15] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||