1 |
Chen H, Ling M, Hencz L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews, 2018, 118(18): 8936-8982.
|
2 |
Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
|
3 |
Goodenough J B, Park K. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
|
4 |
Xie J, Lu Y. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499.
|
5 |
Wu M, Xiao X, Vukmirovic N, et al. Toward an ideal polymer binder design for high-capacity battery anodes[J]. Journal of the American Chemical Society, 2013, 135(32): 12048-12056.
|
6 |
Shi Y, Zhou X, Yu G. Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries[J]. Accounts of Chemical Research, 2017, 50(11): 2642-2652.
|
7 |
Li J, Wu Z, Lu Y, et al. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density[J]. Advanced Energy Materials, 2017, 7(24): 1701185.
|
8 |
Liu W, Yang M, Wu H, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid-state Letters, 2005, 8(2): A100-A103.
|
9 |
Du Pasquier A, Disma F, Bowmer T, et al. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(2): 472-477.
|
10 |
Maleki H, Deng G, Kerzhner-Haller I, et al. Thermal stability studies of binder materials in anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(12): 4470-4475.
|
11 |
Li C, Lin Y. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries[J]. Journal of Power Sources, 2012, 220: 413-421.
|
12 |
Cai Z P, Liang Y, Li W S, et al. Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder[J]. Journal of Power Sources, 2009, 189(1): 547-551.
|
13 |
Chong J, Xun S, Zheng H, et al. A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells[J]. Journal of Power Sources, 2011, 196(18): 7707-7714.
|
14 |
Valvo M, Liivat A, Eriksson H, et al. Iron-based electrodes meet water-based preparation, fluorine-free electrolyte and binder: a chance for more sustainable lithium-ion batteries?[J]. ChemSusChem, 2017, 10(11): 2431-2448.
|
15 |
Jeong S S, Böckenfeld N, Balducci A, et al. Natural cellulose as binder for lithium battery electrodes[J]. Journal of Power Sources, 2012, 199: 331-335.
|
16 |
Huang S, Ren J, Liu R, et al. Enhanced electrochemical properties of LiFePO4 cathode using waterborne lithiated ionomer binder in Li-ion batteries with low amount[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12650-12657.
|
17 |
Gao S, Su Y, Bao L, et al. High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder[J]. Journal of Power Sources, 2015, 298: 292-298.
|
18 |
Zhu C L, Tao C, Bao J J, et al. Waterborne polyurethane used as binders for lithium-ion battery with improved electrochemical properties[J]//Advanced Materials Research, 2015, 1090:199-204.
|
19 |
Nguyen V H, Wang W L, Jin E M, et al. Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode[J]. Applied Surface Science, 2013, 282: 444-449.
|
20 |
Prosini P P, Carewska M, Cento C, et al. Polyvinylacetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 150: 129-135.
|
21 |
Qiu L, Shao Z, Wang D, et al. Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries[J]. Cellulose, 2014, 21(4): 2789-2796.
|
22 |
Eliseeva S N, Levin O V, Tolstopyatova E G, et al. Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries[J]. Russian Journal of Applied Chemistry, 2015, 88(7): 1146-1149.
|
23 |
Tsao C, Wu E, Lee W, et al. Fluorinated copolymer functionalized with ethylene oxide as novel water-borne binder for a high-power lithium ion battery: synthesis, mechanism, and application[J]. ACS Applied Energy Materials, 2018, 1(8): 3999-4008.
|
24 |
Yamamoto H, Mori H. SBR binder (for negative electrode) and ACM binder (for positive electrode)[M]. Springer, 2009, 163-179.
|
25 |
Chou S, Pan Y, Wang J, et al. Small things make a big difference: binder effects on the performance of Li and Na batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(38): 20347-20359.
|
26 |
Aoki S, Han Z, Yamagiwa K, et al. Acrylic acid-based copolymers as functional binder for silicon/graphite composite electrode in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(12): A2245-A2249.
|
27 |
Lee Y, Kim J, Noh J, et al. Wearable textile battery rechargeable by solar energy[J]. Nano letters, 2013, 13(11): 5753-5761.
|
28 |
Park G, Park Y, Park J, et al. Flexible and wrinkle-free electrode fabricated with polyurethane binder for lithium-ion batteries[J]. RSC Advances, 2017, 7(26): 16244-16252.
|
29 |
Han Z, Yabuuchi N, Shimomura K, et al. High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(10): 9014-9020.
|
30 |
Zheng Z, Gao X, Luo Y, et al. Employing gradient copolymer to achieve gel polymer electrolytes with high ionic conductivity[J]. Macromolecules, 2016, 49(6): 2179-2188.
|
31 |
魏迪锋. 锂离子电池硅基负极制备及其负载量和电化学性能提升研究[D]. 杭州: 浙江大学, 2019.
|
|
Wei D F. The preparation of silicon-based anode for lithium-ion battery and study on its loading and electrochemical performance improvement [D]. Hangzhou: Zhejiang University, 2019.
|
32 |
Xiao J, Li Q, Bi Y, et al. Understanding and applying coulombic efficiency in lithium metal batteries[J]. Nature Energy, 2020, 5187: 561-568.
|