化工学报 ›› 2021, Vol. 72 ›› Issue (2): 828-840.DOI: 10.11949/0438-1157.20201139
孙晶晶1,2(),贾丽娜1,2,林波1,2,王艳1,2(),龚俊波1,2()
收稿日期:
2020-08-10
修回日期:
2020-10-09
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
王艳,龚俊波
作者简介:
孙晶晶(1997—),女,硕士研究生,基金资助:
SUN Jingjing1,2(),JIA Lina1,2,LIN Bo1,2,WANG Yan1,2(),GONG Junbo1,2()
Received:
2020-08-10
Revised:
2020-10-09
Online:
2021-02-05
Published:
2021-02-05
Contact:
WANG Yan,GONG Junbo
摘要:
联合用药在临床治疗中显示出降低药物剂量、毒性、耐药性以及提高治疗效果的潜在优势。药物-药物共晶作为联合用药的一种新方法,在分子水平上实现了药物的联合,有望解决联合用药中存在的原料药之间的溶解度差异大、不相容和稳定性差等问题,近几年来引起了研究人员的广泛关注。本文综述了药物-药物共晶的概念和优势,药物-药物共晶的形成、溶解和代谢机理,以及药物-药物共晶的设计和预测方法,最后总结了药物-药物共晶领域尚需解决的问题,并对未来的发展方向进行了展望。
中图分类号:
孙晶晶, 贾丽娜, 林波, 王艳, 龚俊波. 药物-药物共晶的研究进展[J]. 化工学报, 2021, 72(2): 828-840.
SUN Jingjing, JIA Lina, LIN Bo, WANG Yan, GONG Junbo. Research advances of drug-drug co-crystals[J]. CIESC Journal, 2021, 72(2): 828-840.
1 | Simon F. The trouble with making combination drugs [J]. Nature Reviews Drug Discovery, 2006, 5(11): 881-882. |
2 | Wang J, Yu Q, Dai W, et al. Drug-drug co-crystallization presents a new opportunity for the development of stable vitamins [J]. Chemical Communications, 2016, 52(17): 3572-3575. |
3 | Jiang L, Huang Y, Zhang Q, et al. Preparation and solid-state characterization of dapsone drug-drug co-crystals [J]. Crystal Growth & Design, 2014, 14(9): 4562-4573. |
4 | Online Computer Library Center. Reflection paper on the use of cocrystals of active substances in medicinal products [EB]. [2015-07-16]. . |
5 | Online Computer Library Center. Regulatory classification of pharmaceutical co-crystals guidance for industry [EB]. [2018-02-15]. . |
6 | Putra O D, Furuishi T, Yonemochi E, et al. Drug-drug multicomponent crystals as an effective technique to overcome weaknesses in parent drugs [J]. Crystal Growth & Design, 2016, 16(7): 3577-3581. |
7 | Vilar L, Canadas V, Arruda M J, et al. Comparison of metformin, gliclazide MR and rosiglitazone in monotherapy and in combination for type 2 diabetes[J]. Arquivos Brasileiros de Endocrinologia & Metabologia, 2010, 54(3): 311-318. |
8 | Jones G, Prosser D E, Kaufmann M. The activating enzymes of vitamin D metabolism (25-and 1α-hydroxylases)[M]//Vitamin D. New York: Academic Press, 2018: 57-79. |
9 | Swapna B, Maddileti D, Nangia A. Cocrystals of the tuberculosis drug isoniazid: polymorphism, isostructurality, and stability [J]. Crystal Growth & Design, 2014, 14(11): 5991-6005. |
10 | 王灵宇, 杜世超, 董伟兵. 药物共晶多晶型的研究进展[J]. 化学工业与工程, 2018, 35(3): 29-37. |
Wang L Y, Du S C, Dong W B. Research advances of polymorphism in pharmaceutical cocrystals[J]. Chemical Industry and Engineering, 2018, 35(3): 29-37. | |
11 | He H, Jiang L, Zhang Q, et al. Polymorphism observed in dapsone-flavone cocrystals that present pronounced differences in solubility and stability [J]. CrystEngComm, 2015, 17(34): 6566-6574. |
12 | Porter W W, Elie S C, Matzger A J. Polymorphism in carbamazepine cocrystals [J]. Crystal Growth & Design, 2008, 8(1): 14-16. |
13 | Sekhon B S. Drug-drug co-crystals [J]. DARU, 2012, 20(1): 45-45. |
14 | Bangalore S, Kamalakkannan G, Parkar S, et al. Fixed-dose combinations improve medication compliance: a meta-analysis [J]. The American Journal of Medicine, 2007, 120(8): 713-719. |
15 | Fox Z, Dragsted U B, Gerstoft J, et al. A randomized trial to evaluate continuation versus discontinuation of lamivudine in individuals failing a lamivudine-containing regimen: the COLATE trial [J]. Antiviral Therapy, 2006, 11(6): 761-770. |
16 | Mitsuya H, Yarchoan R, Broder S. Molecular targets for AIDS therapy [J]. Science, 1990, 249(4976): 1533-1544. |
17 | Bhatt P M, Azim Y, Thakur T S, et al. Co-crystals of the anti-HIV drugs Lamivudine and Zidovudine [J]. Crystal Growth & Design, 2009, 9(2): 951-957. |
18 | Putra O D, Yoshida T, Umeda D, et al. Crystal structure determination of dimenhydrinate after more than 60 years: solving salt-cocrystal ambiguity via solid-state characterizations and solubility study [J]. Crystal Growth & Design, 2016, 16(9): 5223-5229. |
19 | Nagashima K, Takahashi A, Ikeda H, et al. Sulfonylurea and non-sulfonylurea hypoglycemic agents: pharmachological properties and tissue selectivity[J]. Diabetes Research and Clinical Practice, 2004, 66: S75-S78. |
20 | Setter S M, Iltz J L, Thams J, et al. Metformin hydrochloride in the treatment of type 2 diabetes mellitus: a clinical review with a focus on dual therapy[J]. Clinical Therapeutics, 2003, 25(12): 2991-3026. |
21 | Jia L, Wu S, Gong J. A tolbutamide-metformin salt based on antidiabetic drug combinations: synthesis, crystal structure analysis and pharmaceutical properties [J]. Acta Crystallographica Section C-Crystal Structure Communications, 2019, 75(9): 1250-1258. |
22 | Kuroda R, Higashiguchi K, Hasebe S, et al. Crystal to crystal transformation in the solid state [J]. CrystEngComm, 2004, 6(76): 464-468. |
23 | Chadwick K, Davey R J, Cross W I. How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine [J]. CrystEngComm, 2007, 9(9): 732-734. |
24 | Nguyen K L, Friscic T, Day G M, et al. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation [J]. Nature Materials, 2007, 6(3): 206-209. |
25 | Jayasankar A, Somwangthanaroj A, Shao Z J, et al. Cocrystal formation during cogrinding and storage is mediated by amorphous phase [J]. Pharmaceutical Research, 2006, 23(10): 2381-2392. |
26 | Friscic T, Jones W. Recent advances in understanding the mechanism of cocrystal formation via grinding [J]. Crystal Growth & Design, 2009, 9(3): 1621-1637. |
27 | Seefeldt K, Miller J M, Alvareznunez F, et al. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies [J]. Journal of Pharmaceutical Sciences, 2007, 96(5): 1147-1158. |
28 | Karki S, Friscic T, And W J, et al. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding [J]. Molecular Pharmaceutics, 2007, 4(3): 347-354. |
29 | Friscic T, Childs S L, Rizvi S A A, et al. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome [J]. CrystEngComm, 2009, 11(3): 418-426. |
30 | Rehder S, Klukkert M, Lobmann K, et al. Investigation of the formation process of two piracetam cocrystals during grinding [J]. Pharmaceutics, 2011, 3(4): 706-722. |
31 | Friščić T, Trask A V, Jones W, et al. Screening for inclusion compounds and systematic construction of three‐component solids by liquid‐assisted grinding[J]. Angewandte Chemie, 2006, 45(45): 7546-7550. |
32 | Wang N, Hao H, Lu H, et al. Molecular recognition and self-assembly mechanism of cocrystallization processes [J]. CrystEngComm, 2017, 19(27): 3746-3752. |
33 | Sun S, Zhang H, Xu J, et al. The competition between cocrystallization and separated crystallization based on crystallization from solution [J]. Journal of Applied Crystallography, 2019, 52(4): 769-776. |
34 | Maheshwari C, André V, Reddy S, et al. Tailoring aqueous solubility of a highly soluble compound via cocrystallization: effect of coformer ionization, pHmax and solute-solvent interactions [J]. CrystEngComm, 2012, 14(14): 4801-4811. |
35 | Sathisaran I, Dalvi S V. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium [J]. Pharmaceutics, 2018, 10(3): 108. |
36 | Babu N J, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals [J]. Crystal Growth & Design, 2011, 11(7): 2662-2679. |
37 | Chieng N, Aaltonen J, Saville D J, et al. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(1): 47-54. |
38 | Friscic T, Jones W. Benefits of cocrystallisation in pharmaceutical materials science: an update [J]. Journal of Pharmacy and Pharmacology, 2010, 62(11): 1547-1559. |
39 | Mauritz J M A, Morrisby R S, Hutton R S, et al. Imaging pharmaceutical tablets with optical coherence tomography [J]. Journal of Pharmaceutical Sciences, 2010, 99(1): 385-391. |
40 | Bavishi D D, Borkhataria C H. Spring and parachute: how cocrystals enhance solubility [J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(3): 1-8. |
41 | Huang Y, Zhang B, Gao Y, et al. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability [J]. Journal of Pharmaceutical Sciences, 2014, 103(8): 2330-2337. |
42 | McNamara D P, Childs S L, Giordano J, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API [J]. Pharmaceutical Research, 2006, 23(8): 1888-1897. |
43 | Hickey M B, Peterson M L, Scoppettuolo L, et al. Performance comparison of a co-crystal of carbamazepine with marketed product [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67(1): 112-119. |
44 | Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs[J]. Expert Opinion on Drug Delivery, 2007, 4(4): 403-416. |
45 | Patel N, Gluck J. Is Entresto good for the brain?[J]. World Journal of Cardiology, 2017, 9(7): 594-599. |
46 | Emami S, Siahi-Shadbad M, Adibkia K, et al. Recent advances in improving oral drug bioavailability by cocrystals [J]. Bioimpacts, 2018, 8(4): 305-320. |
47 | Langenickel T H, Dole W P. Angiotensin receptor-neprilysin inhibition with LCZ696: a novel approach for the treatment of heart failure[J]. Drug Discovery Today: Therapeutic Strategies, 2012, 9(4): e131-e139. |
48 | Haneef J, Chadha R. Drug-drug multicomponent solid forms: cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach [J]. AAPS PharmSciTech, 2017, 18(6): 2279-2290. |
49 | Sarmah K K, Nath N, Rao D R, et al. Mechanochemical synthesis of drug-drug and drug-nutraceutical multicomponent solids of olanzapine [J]. CrystEngComm, 2020, 22(6): 1120-1130. |
50 | Thipparaboina R, Kumar D, Chavan R B, et al. Multidrug co-crystals: towards the development of effective therapeutic hybrids [J]. Drug Discovery Today, 2016, 21(3): 481-490. |
51 | Kumar S, Nanda A. Approaches to design of pharmaceutical cocrystals: a review [J]. Mol. Cryst. Liquid Cryst., 2018, 667(1): 54-77. |
52 | Miroshnyk I, Mirza S, Sandler N. Pharmaceutical co-crystals—an opportunity for drug product enhancement [J]. Expert Opinion on Drug Delivery, 2009, 6(4): 333-341. |
53 | Fleischman S G, Kuduva S S, Mcmahon J A, et al. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine [J]. Crystal Growth & Design, 2003, 3(6): 909-919. |
54 | Aakeroy C B, Salmon D J. Building co-crystals with molecular sense and supramolecular sensibility [J]. CrystEngComm, 2005, 7(72): 439-448. |
55 | Braga D, Grepioni F. Making crystals from crystals: a green route to crystal engineering and polymorphism[J]. Chemical Communications, 2005, (29): 3635-3645. |
56 | Bis J A, Vishweshwar P, Weyna D, et al. Hierarchy of supramolecular synthons: persistent hydroxyl···pyridine hydrogen bonds in cocrystals that contain a cyano acceptor [J]. Molecular Pharmaceutics, 2007, 4(3): 401-416. |
57 | Thakuria R, Delori A, Jones W, et al. Pharmaceutical cocrystals and poorly soluble drugs [J]. International Journal of Pharmaceutics, 2013, 453(1): 101-125. |
58 | Maddileti D, Swapna B, Nangia A. High solubility crystalline pharmaceutical forms of blonanserin[J]. Crystal Growth & Design, 2014, 14(5): 2557-2570. |
59 | 马坤. 药物的共晶与盐[J]. 中国药科大学学报, 2012, 43(5): 475-480. |
Ma K. Pharmaceutical cocrystals and salts[J]. Journal of China Pharmaceutical University, 2012, 43(5): 475-480. | |
60 | Silva C C P D, Pepino R D O, de Melo C C, et al. Controlled synthesis of new 5-fluorocytosine cocrystals based on the pKa rule [J]. Crystal Growth & Design, 2014, 14(9): 4383-4393. |
61 | Grecu T, Adams H, Hunter C A, et al. Virtual screening identifies new cocrystals of nalidixic acid [J]. Crystal Growth & Design, 2014, 14(4): 1749-1755. |
62 | Grecu T, Hunter C A, Gardiner E J, et al. Validation of a computational cocrystal prediction tool: comparison of virtual and experimental cocrystal screening results [J]. Crystal Growth & Design, 2014, 14(1): 165-171. |
63 | Grecu T, Prohens R, Mccabe J F, et al. Cocrystals of spironolactone and griseofulvin based on an in silico screening method [J]. CrystEngComm, 2017, 19(26): 3592-3599. |
64 | Wood P A, Feeder N, Furlow M, et al. Knowledge-based approaches to co-crystal design [J]. CrystEngComm, 2014, 16(26): 5839-5848. |
65 | Delori A, Galek P T A, Pidcock E, et al. Knowledge-based hydrogen bond prediction and the synthesis of salts and cocrystals of the anti-malarial drug pyrimethamine with various drug and GRAS molecules [J]. CrystEngComm, 2013, 15(15): 2916-2928. |
66 | Habgood M, Deij M A, Mazurek J, et al. Carbamazepine co-crystallization with pyridine carboxamides: rationalization by complementary phase diagrams and crystal energy landscapes [J]. Crystal Growth & Design, 2010, 10(2): 903-912. |
67 | Fabian L. Cambridge structural database analysis of molecular complementarity in cocrystals [J]. Crystal Growth & Design, 2009, 9(3): 1436-1443. |
68 | Issa N, Karamertzanis P G, Welch G W A, et al. Can the formation of pharmaceutical cocrystals be computationally predicted?(Ⅰ): Comparison of lattice energies [J]. Crystal Growth & Design, 2009, 9(1): 442-453. |
69 | Mohammad M, Alhalaweh A, Velaga S P. Hansen solubility parameter as a tool to predict cocrystal formation [J]. International Journal of Pharmaceutics, 2011, 407(1): 63-71. |
70 | Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening [J]. CrystEngComm, 2008, 10(6): 665-668. |
71 | Saganowska P, Wesolowski M. DSC as a screening tool for rapid co-crystal detection in binary mixtures of benzodiazepines with co-formers [J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(1): 785-795. |
72 | Yamashita H, Hirakura Y, Yuda M, et al. Detection of cocrystal formation based on binary phase diagrams using thermal analysis [J]. Pharmaceutical Research, 2013, 30(1): 70-80. |
73 | Yamashita H, Hirakura Y, Yuda M, et al. Coformer screening using thermal analysis based on binary phase diagrams [J]. Pharmaceutical Research, 2014, 31(8): 1946-1957. |
74 | Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties [J]. Crystal Growth & Design, 2009, 9(6): 2950-2967. |
75 | Cherukuvada S, Nangia A. Eutectics as improved pharmaceutical materials: design, properties and characterization [J]. Chemical Communications, 2014, 50(8): 906-923. |
76 | Yan Y, Chen J, Lu T. Thermodynamics and preliminary pharmaceutical characterization of a melatonin-pimelic acid cocrystal prepared by a melt crystallization method [J]. CrystEngComm, 2015, 17(3): 612-620. |
77 | Sathisaran I, Dalvi S V. Crystal engineering of curcumin with salicylic acid and hydroxyquinol as coformers [J]. Crystal Growth & Design, 2017, 17(7): 3974-3988. |
78 | Skieneh J M, Sathisaran I, Dalvi S V, et al. Co-amorphous form of curcumin-folic acid dihydrate with increased dissolution rate [J]. Crystal Growth & Design, 2017, 17(12): 6273-6280. |
79 | Chow S F, Shi L, Ng W W, et al. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol [J]. Crystal Growth & Design, 2014, 14(10): 5079-5089. |
80 | Malamatari M, Ross S A, Douroumis D, et al. Experimental cocrystal screening and solution based scale-up cocrystallization methods [J]. Advanced Drug Delivery Reviews, 2017, 117: 162-77. |
81 | Chiarella R A, Davey R J, Peterson M L. Making co-crystals: the utility of ternary phase diagrams [J]. Crystal Growth & Design, 2007, 7(7): 1223-1226. |
82 | Zhang S, Chen H, Rasmuson Å C. Thermodynamics and crystallization of a theophylline-salicylic acid cocrystal [J]. CrystEngComm, 2015, 17(22): 4125-4135. |
83 | Good D J, Rodríguez-Hornedo N. Cocrystal eutectic constants and prediction of solubility behavior [J]. Crystal Growth & Design, 2010, 10(3): 1028-1032. |
84 | Lange L, Lehmkemper K, Sadowski G. Predicting the aqueous solubility of pharmaceutical cocrystals as a function of pH and temperature [J]. Crystal Growth & Design, 2016, 16(5): 2726-2740. |
85 | Sun X, Yin Q, Ding S, et al. Solid-liquid phase equilibrium and ternary phase diagrams of ibuprofen-nicotinamide cocrystals in ethanol and ethanol/water mixtures at (298.15 and 313.15) K [J]. Journal of Chemical & Engineering Data, 2015, 60(4): 1166-1172. |
86 | Duggirala N K, Perry M L, Almarsson Ö, et al. Pharmaceutical cocrystals: along the path to improved medicines [J]. Chemical Communications, 2016, 52(4): 640-655. |
87 | Desai A S, McMurray J J V, Packer M, et al. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients [J]. European Heart Journal, 2015, 36(30): 1990-1997. |
88 | Videla S, Lahjou M, Vaqué A, et al. Single‐dose pharmacokinetics of co‐crystal of tramadol-celecoxib: results of a four‐way randomized open‐label phase I clinical trial in healthy subjects[J]. British Journal of Clinical Pharmacology, 2017, 83(12): 2718-2728. |
89 | Almansa C, Mercè R, Tesson N, et al. Co-crystal of tramadol hydrochloride-celecoxib (ctc): a novel API-API co-crystal for the treatment of pain [J]. Crystal Growth & Design, 2017, 17(4): 1884-1892. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[5] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[6] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[7] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[8] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[9] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[10] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[11] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[12] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[13] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||