化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2792-2800.DOI: 10.11949/0438-1157.20210081
收稿日期:
2021-01-13
修回日期:
2021-02-08
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
李瑞,吴玉龙
作者简介:
张溪(1996—),女,硕士研究生,基金资助:
ZHANG Xi1(),ZHANG Lilong2,LI Rui1(),WU Yulong2()
Received:
2021-01-13
Revised:
2021-02-08
Online:
2021-05-05
Published:
2021-05-05
Contact:
LI Rui,WU Yulong
摘要:
生物质的流态化快速热解技术具有设备结构简单、液相产物得率高等优点,但反应过程中大量的循环流化气体需要加热至反应温度,因而存在能耗高的问题。针对我国农村秸秆分布广和集中处理运输消耗大等特点,在已有1000 t/a处理规模的中试基础上,提出了具有能量回收效率高、秸秆处理集约化的流态化快速热解系统。系统通过高温气相换热、冷凝与提馏相结合等方法,回收了占总需求66.02%的热量,得到含水率小于3%的热解原油及富水木醋液产品,并通过烟气燃烧供热实现了系统热量自给。通过生命周期评价表明,整个系统的温室气体排放为-428.42 kg CO2 eq,与秸秆直接焚烧相比大幅度降低了对环境的影响。
中图分类号:
张溪,张立龙,李瑞,吴玉龙. 基于能量集成的秸秆生物质快速热解生命周期评价[J]. 化工学报, 2021, 72(5): 2792-2800.
ZHANG Xi,ZHANG Lilong,LI Rui,WU Yulong. Life cycle assessment of straw fast pyrolysis based on energy integration[J]. CIESC Journal, 2021, 72(5): 2792-2800.
阶段 | 输入 | 输出 | ||
---|---|---|---|---|
资源 | 数量 | 产品 | 数量 | |
秸秆生产采收 | N肥 | 2.60 kg | 秸秆(含水率70%) | 2216.67 kg |
P2O5 | 1.09 kg | |||
K2O | 3.06 kg | |||
农药 | 0.18 kg | |||
灌溉水 | 108.55 m3 | |||
电力 | 48.85 kWh | |||
柴油 | 2.64 kg | |||
秸秆运输 | 货车 | 9.5 t·km | 秸秆(含水率30%) | 950.00 kg |
秸秆破碎干燥 | 秸秆 | 950.00 kg | 秸秆(含水率5%) | 700.00 kg |
滚筒电机 | 4.5 kWh | |||
流态化热解 | 秸秆(含水率5%) | 700.00 kg | 生物炭 | 126.00 kg |
空气 | 500.00 kg | 高温气相① | 1958.00 kg | |
循环流化气 | 1540.00 kg | CO2② | 234.03 kg | |
空气风机 | 7.24 kWh | H2O③ | 38.54 kg | |
流化气风机 | 27.45 kWh | N2④ | 383.43 kg | |
冷凝分离 | 高温气相① | 1958.00 kg | 生物原油 | 133.00 kg |
脱水塔循环泵 | 2.20 kWh | 木醋液 | 285.00 kg | |
循环水 | 0.54 m3 | |||
醋液塔循环泵 | 3.00 kWh | |||
水泵 | 3.70 kWh |
表1 流态化热解系统生命周期评价主要流程清单
Table 1 The inventory data of main processes for straw fluidized fast pyrolysis system
阶段 | 输入 | 输出 | ||
---|---|---|---|---|
资源 | 数量 | 产品 | 数量 | |
秸秆生产采收 | N肥 | 2.60 kg | 秸秆(含水率70%) | 2216.67 kg |
P2O5 | 1.09 kg | |||
K2O | 3.06 kg | |||
农药 | 0.18 kg | |||
灌溉水 | 108.55 m3 | |||
电力 | 48.85 kWh | |||
柴油 | 2.64 kg | |||
秸秆运输 | 货车 | 9.5 t·km | 秸秆(含水率30%) | 950.00 kg |
秸秆破碎干燥 | 秸秆 | 950.00 kg | 秸秆(含水率5%) | 700.00 kg |
滚筒电机 | 4.5 kWh | |||
流态化热解 | 秸秆(含水率5%) | 700.00 kg | 生物炭 | 126.00 kg |
空气 | 500.00 kg | 高温气相① | 1958.00 kg | |
循环流化气 | 1540.00 kg | CO2② | 234.03 kg | |
空气风机 | 7.24 kWh | H2O③ | 38.54 kg | |
流化气风机 | 27.45 kWh | N2④ | 383.43 kg | |
冷凝分离 | 高温气相① | 1958.00 kg | 生物原油 | 133.00 kg |
脱水塔循环泵 | 2.20 kWh | 木醋液 | 285.00 kg | |
循环水 | 0.54 m3 | |||
醋液塔循环泵 | 3.00 kWh | |||
水泵 | 3.70 kWh |
1 | 肖陆飞, 哈云, 孟飞, 等. 生物质气化技术研究与应用进展[J]. 现代化工, 2020, 40(12): 68-72, 76. |
Xiao L F, Ha Y, Meng F, et al. Research and application progress on biomass gasification technologies[J]. Modern Chemical Industry, 2020, 40(12): 68-72, 76. | |
2 | 任喜熙, 陈祁, 杨海平, 等. 基于CPFD方法的流化床生物质气化数值模拟[J]. 化工学报, 2020, 71(12): 5763-5773. |
Ren X X, Chen Q, Yang H P, et al. Numerical simulation of 3D fluidized bed biomass gasification based on CPFD[J]. CIESC Journal, 2020, 71(12): 5763-5773. | |
3 | Shang H, Fu Q L, Zhang S C, et al. Heating temperature dependence of molecular characteristics and biological response for biomass pyrolysis volatile-derived water-dissolved organic matter[J]. Science of the Total Environment, 2021, 757: 143749. |
4 | 贺尧. 生物质快速热解气力输送进料器设计及试验研究[D]. 北京: 北京林业大学, 2019. |
He Y. Design and experimental study of biomass rapid pyrolysis pneumatic conveying feeder[D]. Beijing: Beijing Forestry University, 2019. | |
5 | 方乐. 多仓室流化床生物质热裂解反应器的流态化特性研究[D]. 青岛: 青岛科技大学, 2019. |
Fang L. Study on fluidization characteristics of multi-compartment fluidized bed reactor for biomass pyrolysis[D]. Qingdao: Qingdao University of Science & Technology, 2019. | |
6 | 陈爱慧. 生物质三组分热解试验研究[D]. 哈尔滨: 东北农业大学, 2015. |
Chen A H. Experimental study on the pyrolysis of three main components in biomass[D]. Harbin: Northeast Agricultural University, 2015. | |
7 | Zhang L F, Hou J T, Bi X T, et al. Fluidization characteristics and charging behavior of fly ash in a vibro-fluidized bed[J]. Powder Technology, 2012, 215/216: 235-241. |
8 | Escudero D, Heindel T J. Minimum fluidization velocity in a 3D fluidized bed modified with an acoustic field[J]. Chemical Engineering Journal, 2013, 231: 68-75. |
9 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
10 | 唐瑞源, 刘凯, 燕阳天, 等. 劣质重油流态化热转化提质工艺进展[J]. 石油与天然气化工, 2018, 47(5): 10-15. |
Tang R Y, Liu K, Yan Y T, et al. Progress of fluidization thermal conversion upgrading process of low-quality heavy oil[J]. Chemical Engineering of Oil & Gas, 2018, 47(5): 10-15. | |
11 | 郑志锋, 郑云武, 黄元波, 等. 木质生物质催化热解制备富烃生物油研究进展[J]. 林业工程学报, 2019, 4(2): 1-12. |
Zheng Z F, Zheng Y W, Huang Y B, et al. Recent research progress on production of hydrocarbon-rich bio-oil through catalytic pyrolysis of lignocellulosic biomass[J]. Journal of Forestry Engineering, 2019, 4(2): 1-12. | |
12 | 陈宇, 纪红兵. 木质素类生物质催化热解制备精细化学品研究进展[J]. 化工进展, 2019, 38(1): 626-638. |
Chen Y, Ji H B. Catalytic pyrolysis of lignin biomass for the production of fine chemicals[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 626-638. | |
13 | Yang H, Kudo S, Kuo H P, et al. Estimation of enthalpy of bio-oil vapor and heat required for pyrolysis of biomass[J]. Energy & Fuels, 2013, 27(5): 2675-2686. |
14 | Erbíl A Ç, Turan M. Assessment of the energy dissipation parameters inside the draft tube of a liquid spout-fluid bed[J]. Environmental Science & Technology, 2005, 39(8): 2898-2905. |
15 | Erbíl A Ç. Annulus leakage and distribution of the fluid flow in a liquid spout-fluid bed with a draft tube[J]. Chemical Engineering Science, 2003, 58(20): 4739-4745. |
16 | 金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001. |
Jin Y. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001. | |
17 | 陈红健, 范晓旭, 韩中合, 等. 生物质流态化炭气联产初步研究[J]. 农机化研究, 2015, 37(5): 242-245. |
Chen H J, Fan X X, Han Z H, et al. A preliminary study of biochar-gas cogeneration from biomass fluidized pyrolysis[J]. Journal of Agricultural Mechanization Research, 2015, 37(5): 242-245. | |
18 | 张萌, 范晓旭, 韩中合, 等. 生物质流态化解耦气化装置冷态试验[J]. 化工进展, 2011, 30(S1): 490-493. |
Zhang M, Fan X X, Han Z H, et al. Cold experiment on biomass fluidized decoupled gasification model[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 490-493. | |
19 | 刘巍, 杨松祥, 王守芳, 等. 粮油产品的流化加工研究[J]. 南京师范大学学报(工程技术版), 2011, 11(1): 80-83. |
Liu W, Yang S X, Wang S F, et al. Study on fluidization processing of grain and oil product[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2011, 11(1): 80-83. | |
20 | 王世栋, 都永生, 孙庆国, 等. 流态化法部分热解氯化镁制备镁水泥原料的研究[J]. 盐湖研究, 2010, 18(1): 42-45. |
Wang S D, Du Y S, Sun Q G, et al. Study on preparation of magnesia cement raw materials by partial thermal decomposition of hydrate magnesium chloride in fluidized bed[J]. Journal of Salt Lake Research, 2010, 18(1): 42-45. | |
21 | 罗俊, 邵敬爱, 杨海平, 等. 生物质催化热解制备低碳烯烃的研究进展[J]. 化工进展, 2017, 36(5): 1555-1564. |
Luo J, Shao J A, Yang H P, et al. Research progresses on production of light olefins from catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1555-1564. | |
22 | 王芸, 邵珊珊, 张会岩, 等. 生物质模化物催化热解制取烯烃和芳香烃[J]. 化工学报, 2015, 66(8): 3022-3028. |
Wang Y, Shao S S, Zhang H Y, et al. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J]. CIESC Journal, 2015, 66(8): 3022-3028. | |
23 | 桑小义, 李会峰, 李明丰, 等. 生物质热解油的特性及精制[J]. 石油学报(石油加工), 2015, 31(1): 178-187. |
Sang X Y, Li H F, Li M F, et al. The properties and upgrading of bio-oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(1): 178-187. | |
24 | 胡亿明.木质生物质各组分热解过程和热力学特性研究[D]. 北京: 中国林业科学研究院, 2013. |
Hu Y M. Pyrolysis process and thermodynamic characteristics of lignocellulosic biomass components[D]. Beijing: Chinese Academy of Forestry, 2013. | |
25 | Liu J J, Hou Q D, Ju M T, et al. Biomass pyrolysis technology by catalytic fast pyrolysis, catalytic co-pyrolysis and microwave-assisted pyrolysis: a review[J]. Catalysts, 2020, 10(7): 742. |
26 | 侯宝鑫, 张守玉, 吴巧美, 等. 生物质热解制备木醋液及其性质研究[J]. 燃料化学学报, 2015, 43(12): 1439-1445. |
Hou B X, Zhang S Y, Wu Q M, et al. Wood vinegar and its properties from pyrolysis of biomass[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12): 1439-1445. | |
27 | 中国农业年鉴编辑委员会. 中国农业年签 [M]. 北京:中国农业大学出版社, 2020. |
Editorial Committee of China Agricultural Yearbook. China Agricultural Yearbook[M]. Beijing: China Agricultural University Press, 2020. | |
28 | 冉光和, 王建洪, 王定祥. 我国现代农业生产的碳排放变动趋势研究[J]. 农业经济问题, 2011, 32(2): 32-38,110-111. |
Ran G H, Wang J H, Wang D X. Study on the changing tendency and counter-measures of carbon emission produced by agricultural production in China[J]. Issues in Agricultural Economy, 2011, 32(2): 32-38,110-111. | |
29 | 梁龙, 陈源泉, 高旺盛. 两种水稻生产方式的生命周期环境影响评价[J]. 农业环境科学学报, 2009, 28(9): 1992-1996. |
Liang L, Chen Y Q, Gao W S. Assessment of the environmental impacts of two rice production patterns using life cycle assessment[J]. Journal of Agro-Environment Science, 2009, 28(9): 1992-1996. | |
30 | 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21-27. |
Min J S, Hu H. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population Resources and Environment, 2012, 22(7): 21-27. | |
31 | 李贞宇, 王旭, 魏静, 等. 我国不同区域玉米施肥的生命周期评价[J]. 环境科学学报, 2010, 30(9): 1912-1920. |
Li Z Y, Wang X, Wei J, et al. Life cycle assessment of fertilization in corn production in different regions of China[J]. Acta Scientiae Circumstantiae, 2010, 30(9): 1912-1920. | |
32 | 梁龙, 陈源泉, 高旺盛, 等. 华北平原冬小麦-夏玉米种植系统生命周期环境影响评价[J]. 农业环境科学学报, 2009, 28(8): 1773-1776. |
Liang L, Chen Y Q, Gao W S, et al. Life cycle environmental impact assessment in winter wheat-summer maize system in North China plain[J]. Journal of Agro-Environment Science, 2009, 28(8): 1773-1776. |
[1] | 王凯玥, 马永丽, 李琛, 刘明言. 气液固微型流化床的气液传质系数[J]. 化工学报, 2022, 73(8): 3529-3540. |
[2] | 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467. |
[3] | 胡善伟, 刘新华. 气固流化系统多尺度跨流域EMMS建模[J]. 化工学报, 2022, 73(6): 2514-2528. |
[4] | 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495. |
[5] | 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485. |
[6] | 何聪, 钟文琪, 周冠文, 陈曦. 高海拔地区水泥生料悬浮炉分解特性研究[J]. 化工学报, 2022, 73(5): 2120-2129. |
[7] | 叶茂林, 谭烽华, 李宇萍, 廖玉河, 王晨光, 马隆龙. 农林废弃物气化合成混合醇生命周期环境影响分析[J]. 化工学报, 2022, 73(3): 1369-1378. |
[8] | 周楠, 王簪, 邵应娟, 钟文琪. 煤沥青球气固流化磨损特性实验研究[J]. 化工学报, 2022, 73(2): 587-594. |
[9] | 周云龙, 林东尧, 叶校源, 孙博. 常见离子对玉米秸秆为牺牲剂的光催化制氢影响[J]. 化工学报, 2022, 73(2): 722-729. |
[10] | 马永丽, 刘明言, 李琛, 胡宗定. 液固和气液固微型流态化研究进展[J]. 化工学报, 2022, 73(1): 46-58. |
[11] | 蒋丽群,岳元茂,徐禄江,钱乐,刘世君,赵增立,李海滨,廖艳芬. 预处理促进木质纤维素快速热解生成左旋葡聚糖[J]. 化工学报, 2021, 72(4): 1825-1832. |
[12] | 魏砾宏, 樊雨, 房凡, 郭良振, 陈勇, 杨天华. Na及矿物类型对高碱煤快速热解焦油及BTEXN产物分配的影响[J]. 化工学报, 2021, 72(3): 1702-1711. |
[13] | 王荘, 吕潇, 邵媛媛, 祝京旭. 流态化的往昔寻觅及未来启示[J]. 化工学报, 2021, 72(12): 5904-5927. |
[14] | 徐坤, 方阳, 宫梦, 陈应泉, 陈旭, 王贤华, 杨海平, 陈汉平. 葡萄糖催化热解制备左旋葡萄糖酮特性研究[J]. 化工学报, 2020, 71(8): 3594-3601. |
[15] | 张晗,付乾,廖强,夏奡,黄云,朱贤青,朱恂. 小麦秸秆水热预处理半纤维素降解动力学研究[J]. 化工学报, 2020, 71(7): 3098-3105. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 410
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 722
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||