1 |
Maruta K. Micro and mesoscale combustion[J]. Proceedings of the Combustion Institute, 2011, 33(1): 125-150.
|
2 |
Ong B C, Kamarudin S K, Basri S. Direct liquid fuel cells: a review[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10142-10157.
|
3 |
Zhang X W, Pan L, Wang L, et al. Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125.
|
4 |
刘红, 何阳, 蔡畅, 等. 乙醇和正丁醇添加剂对喷雾冷却的影响[J]. 化工学报, 2019, 70(1): 65-71.
|
|
Liu H, He Y, Cai C, et al. Influence of ethanol and n-butanol additives on spray cooling[J]. CIESC Journal, 2019, 70(1): 65-71.
|
5 |
Ju Y G, Maruta K. Microscale combustion: technology development and fundamental research[J]. Progress in Energy and Combustion Science, 2011, 37(6): 669-715.
|
6 |
Balat M, Balat H, de Öz C. Progress in bioethanol processing[J]. Progress in Energy and Combustion Science, 2008, 34(5): 551-573.
|
7 |
Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel[J]. Applied Energy, 2009, 86(11): 2273-2282.
|
8 |
Lefebvre A H, Ballal D R. Gas Turbine Combustion: Alternative Fuels and Emissions[M]. Florida: CRC Press, 2014: 485.
|
9 |
Chen J, Peng X F, Yang Z L, et al. Characteristics of liquid ethanol diffusion flames from mini tube nozzles[J]. Combustion and Flame, 2009, 156(2): 460-466.
|
10 |
Xu T, Gao X N, Yang J, et al. Experimental and numerical simulation study of the microscale laminar flow diffusion combustion of liquid ethanol[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 8021-8027.
|
11 |
Yang Z L, Xu T, Gan Y H. Experimental study on the diffusion flame using liquid ethanol as fuel in mini-scale[C]//Proceedings of ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. Tainan, Taiwan, China, 2009: 853-857.
|
12 |
杨泽亮, 薛峰, 甘云华. 陶瓷管作燃烧器的乙醇扩散小火焰实验研究[J]. 热科学与技术, 2008, 7(4): 367-372.
|
|
Yang Z L, Xue F, Gan Y H. Experimental study of small jet diffusion flame of alcohol with ceramic tube as burner[J]. Journal of Thermal Science and Technology, 2008, 7(4): 367-372.
|
13 |
甘云华, 陈邵有, 杨泽亮, 等. 液体乙醇微尺度扩散火焰高度的影响因素研究[J]. 工程热物理学报, 2010, 31(11): 1957-1960.
|
|
Gan Y H, Chen S Y, Yang Z L, et al. Study on the factors affecting the micro diffusion flame height of liquid ethanol[J]. Journal of Engineering Thermophysics, 2010, 31(11): 1957-1960.
|
14 |
Gan Y H, Xu J L, Yan Y Y, et al. A comparative study on free jet and confined jet diffusion flames of liquid ethanol from small nozzles[J]. Combustion Science and Technology, 2014, 186(2): 120-138.
|
15 |
甘云华, 佟洋, 罗智斌. 乙醇在微尺度单电极燃烧器内的雾化与燃烧[J]. 化工学报, 2015, 66(11): 4597-4602.
|
|
Gan Y H, Tong Y, Luo Z B. Electro-spraying and combustion of alcohol in micro-combustor with single electrode[J]. CIESC Journal, 2015, 66(11): 4597-4602.
|
16 |
Rietveld I B, Kobayashi K, Yamada H, et al. Electrospray deposition, model, and experiment: toward general control of film morphology[J]. The Journal of Physical Chemistry. B, 2006, 110(46): 23351-23364.
|
17 |
Kim J W, Yamagata Y, Kim B J, et al. Direct and dry micro-patterning of nano-particles by electrospray deposition through a micro-stencil mask[J]. Journal of Micromechanics and Microengineering, 2009, 19(2): 025021.
|
18 |
Oh H, Kim K, Kim S. Characterization of deposition patterns produced by twin-nozzle electrospray[J]. Journal of Aerosol Science, 2008, 39(9): 801-813.
|
19 |
Temperton R H, O'Shea J N, Scurr D J. On the suitability of high vacuum electrospray deposition for the fabrication of molecular electronic devices[J]. Chemical Physics Letters, 2017, 682: 15-19.
|
20 |
Hsu R Y, Liao J H, Tien H W, et al. Gas chromatography electrospray ionization mass spectrometry analysis of trimethylsilyl derivatives[J]. Journal of Mass Spectrometry, 2016, 51(10): 883-888.
|
21 |
Nomura H, Hayasaki M, Ujiie Y. Effects of fine fuel droplets on a laminar flame stabilized in a partially prevaporized spray stream[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2265-2272.
|
22 |
叶宏程, 甘云华, 江政纬, 等. 乙醇荷电喷雾对冲燃烧的火焰特性[J]. 化工学报, 2019, 70(12): 4787-4794.
|
|
Ye H C, Gan Y H, Jiang Z W, et al. Flame characteristics of alcohol electro-spraying in counter-flow combustor[J]. CIESC Journal, 2019, 70(12): 4787-4794.
|
23 |
Gan Y H, Tong Y, Ju Y G, et al. Experimental study on electro-spraying and combustion characteristics in meso-scale combustors[J]. Energy Conversion and Management, 2017, 131: 10-17.
|
24 |
Higuera F J, Tejera J M. Vaporization and gas-phase combustion of electrosprayed heptane in a small chamber[J]. Combustion and Flame, 2017, 177: 144-154.
|
25 |
Niemann U, Seshadri K, Williams F A. Accuracies of laminar counterflow flame experiments[J]. Combustion and Flame, 2015, 162(4): 1540-1549.
|
26 |
Wang Y L, Veloo P S, Egolfopoulos F N, et al. A comparative study on the extinction characteristics of non-premixed dimethyl ether and ethanol flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1003-1010.
|
27 |
Seiser R, Humer S, Seshadri K, et al. Experimental investigation of methanol and ethanol flames in nonuniform flows[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1173-1180.
|
28 |
Veloo P S, Wang Y L, Egolfopoulos F N, et al. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames[J]. Combustion and Flame, 2010, 157(10): 1989-2004.
|
29 |
Li Y Z, Hu G, Liao S Y, et al. Effects of partial premixing on NO production in methanol/dimethyl ether counterflow flames[J]. Fuel, 2018, 234: 974-984.
|
30 |
Guo H S, Ju Y G, Maruta K, et al. Radiation extinction limit of counterflow premixed lean methane-air flames[J]. Combustion and Flame, 1997, 109(4): 639-646.
|
31 |
Hubbard G L, Tien C L. Infrared mean absorption coefficients of luminous flames and smoke[J]. Journal of Heat Transfer, 1978, 100(2): 235-239.
|
32 |
Mittal G, Burke S M, Davies V A, et al. Autoignition of ethanol in a rapid compression machine[J]. Combustion and Flame, 2014, 161(5): 1164-1171.
|
33 |
Berta P, Puri I K, Aggarwal S K. Structure of partially premixed n-heptane-air counterflow flames[J]. Proceedings of the Combustion Institute, 2005, 30(1): 447-453.
|