化工学报 ›› 2021, Vol. 72 ›› Issue (6): 2934-2956.DOI: 10.11949/0438-1157.20210110
收稿日期:
2021-01-18
修回日期:
2021-04-06
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
高娃
作者简介:
高娃(1987—),女,博士,讲师,基金资助:
GAO Wa1(),RAN Xiangkun1,ZHAO Hanqing1,ZHAO Yufei2
Received:
2021-01-18
Revised:
2021-04-06
Online:
2021-06-05
Published:
2021-06-05
Contact:
GAO Wa
摘要:
我国盐湖镁资源丰富,合理利用镁资源制备高性能、高附加值的功能性材料,是镁资源可持续性开发与利用的重要导向标。镁基水滑石是指层板结构包含镁的二元、三元或多元水滑石,具有层板金属元素呈原子级分散、层板组成比例可调、插层阴离子可交换、结构拓扑转变以及记忆效应等结构特点,其在现代石油化工、煤化工、精细化工以及环境净化等领域具有广阔的应用前景。本文重点综述近几年基于镁基水滑石催化材料的研究进展,并总结其结构调控规律,为后续镁基水滑石催化材料的应用提供借鉴。
中图分类号:
高娃, 冉祥堃, 赵汗青, 赵宇飞. 镁基水滑石催化材料的研究进展[J]. 化工学报, 2021, 72(6): 2934-2956.
GAO Wa, RAN Xiangkun, ZHAO Hanqing, ZHAO Yufei. Research progress of catalytic materials based on Mg-based layered double hydroxides[J]. CIESC Journal, 2021, 72(6): 2934-2956.
1 | Fan G L, Li F, Evans D G, et al. Catalytic applications of layered double hydroxides: recent advances and perspectives[J]. Chemical Society Reviews, 2014, 43(20): 7040-7066. |
2 | Feng J T, He Y F, Liu Y N, et al. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects[J]. Chemical Society Reviews, 2015, 44(15): 5291-5319. |
3 | He S, An Z, Wei M, et al. Layered double hydroxide-based catalysts: nanostructure design and catalytic performance[J]. ChemInform, 2013, 44(36): 5912-5920. |
4 | Gao W, Zhao Y F, Chen H R, et al. Core–shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[J]. Green Chemistry, 2015, 17(3): 1525-1534. |
5 | Li Y W, Gao W, Peng M, et al. Interfacial Fe5C2 -Cu catalysts toward low-pressure syngas conversion to long-chain alcohols[J]. Nature Communications, 2020, 11: 61. |
6 | Gao W, Zhao Y F, Liu J M, et al. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catalysis Science & Technology, 2013, 3(5): 1324. |
7 | Li H P, Yang T X, Jiang Y W, et al. Synthesis of supported Pd nanocluster catalyst by spontaneous reduction on layered double hydroxide[J]. Journal of Catalysis, 2020, 385: 313-323. |
8 | Liu Y N, Zhao J Y, He Y F, et al. Highly efficient PdAg catalyst using a reducible Mg-Ti mixed oxide for selective hydrogenation of acetylene: role of acidic and basic sites[J]. Journal of Catalysis, 2017, 348: 135-145. |
9 | He Y F, Liang L L, Liu Y N, et al. Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd-Ga/MgO-Al2O3 catalyst[J]. Journal of Catalysis, 2014, 309: 166-173. |
10 | Xi Y Z, Davis R J. Influence of water on the activity and stability of activated MgAl hydrotalcites for the transesterification of tributyrin with methanol[J]. Journal of Catalysis, 2008, 254(2): 190-197. |
11 | Choudary B M, Lakshmi Kantam M, Neeraja V, et al. Layered double hydroxide fluoride: a novel solid base catalyst for C—C bond formation[J]. Green Chemistry, 2001, 3(5): 257-260. |
12 | Choudary B M, Lakshmi Kantam M, Venkat Reddy C R, et al. The first example of Michael addition catalysed by modified Mg-Al hydrotalcite[J]. Journal of Molecular Catalysis A: Chemical, 1999, 146(1/2): 279-284. |
13 | Ezeh C I, Tomatis M, Yang X G, et al. Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness[J]. Ultrasonics Sonochemistry, 2018, 40: 341-352. |
14 | Kuljiraseth J, Wangriya A, Malones J M C, et al. Synthesis and characterization of AMO LDH-derived mixed oxides with various Mg/Al ratios as acid-basic catalysts for esterification of benzoic acid with 2-ethylhexanol[J]. Applied Catalysis B: Environmental, 2019, 243: 415-427. |
15 | Pérez-Barrado E, Pujol M C, Aguiló M, et al. Influence of acid-base properties of calcined MgAl and CaAl layered double hydroxides on the catalytic glycerol etherification to short-chain polyglycerols[J]. Chemical Engineering Journal, 2015, 264: 547-556. |
16 | Xu S, Liao M C, Zeng H Y, et al. Magnetic hydrotalcites as solid basic catalysts for cellulose hydrolysis[J]. Applied Clay Science, 2015, 115: 124-131. |
17 | Wang Z, Fongarland P, Lu G Z, et al. Reconstructed La-, Y-, Ce-modified MgAl-hydrotalcite as a solid base catalyst for aldol condensation: investigation of water tolerance[J]. Journal of Catalysis, 2014, 318: 108-118. |
18 | 郭军, 矫庆泽, 沈剑平, 等. 杂多阴离子柱撑水滑石的合成、热稳定性、酸碱性研究[J]. 化学学报, 1996, 54(4): 357-362. |
Guo J, Jiao Q Z, Shen J P, et al. Studies on synthesis, thermal stabilities and acid-base properties of heteropolyanions pillared layered double hydroxides[J]. Acta Chimica Sinica, 1996, 54(4): 357-362. | |
19 | Liu P, Wang H, Feng Z C, et al. Direct immobilization of self-assembled polyoxometalate catalyst in layered double hydroxide for heterogeneous epoxidation of olefins[J]. Journal of Catalysis, 2008, 256(2): 345-348. |
20 | Liu P, Wang C H, Li C. Epoxidation of allylic alcohols on self-assembled polyoxometalates hosted in layered double hydroxides with aqueous H2O2 as oxidant[J]. Journal of Catalysis, 2009, 262(1): 159-168. |
21 | Zhao S, Xu J H, Wei M, et al. Synergistic catalysis by polyoxometalate-intercalated layered double hydroxides: oximation of aromatic aldehydes with large enhancement of selectivity[J]. Green Chemistry, 2011, 13(2): 384-389. |
22 | Li T F, Wang Z L, Chen W, et al. Rational design of a polyoxometalate intercalated layered double hydroxide: highly efficient catalytic epoxidation of allylic alcohols under mild and solvent-free conditions[J]. Chemistry - A European Journal, 2017, 23(5): 1069-1077. |
23 | Li T F, Zhang W, Chen W, et al. Modular polyoxometalate-layered double hydroxides as efficient heterogeneous sulfoxidation and epoxidation catalysts[J]. ChemCatChem, 2018, 10(1): 188-197. |
24 | 李腾飞, 王泽林, 许艳旗, 等. 多酸插层水滑石复合材料的新进展[J]. 中国科学: 化学, 2017, 47(4): 451-464. |
Li T F, Wang Z L, Xu Y Q, et al. Recent progress in polyoxometalate-intercalated layered double hydroxides composite materials[J]. Scientia Sinica (Chimica), 2017, 47(4): 451-464. | |
25 | Bai X L, Huang X, Wen L, et al. A new strategy for the selective oxidation of alcohols catalyzed by a polyoxometalate-based hybrid surfactant in biphasic systems[J]. Chemical Communications, 2019, 55(25): 3598-3601. |
26 | Subramanian T, Dhakshinamoorthy A, Pitchumani K. Amino acid intercalated layered double hydroxide catalyzed chemoselective methylation of phenols and thiophenols with dimethyl carbonate[J]. Tetrahedron Letters, 2013, 54(52): 7167-7170. |
27 | Shi H M, Yu C G, He J. Constraining titanium tartrate in the interlayer space of layered double hydroxides induces enantioselectivity[J]. Journal of Catalysis, 2010, 271(1): 79-87. |
28 | Shi H M, Yu C G, He J. On the structure of layered double hydroxides intercalated with titanium tartrate complex for catalytic asymmetric sulfoxidation[J]. The Journal of Physical Chemistry C, 2010, 114(41): 17819-17828. |
29 | Wang J Z, Zhao L W, Shi H M, et al. Highly enantioselective and efficient asymmetric epoxidation catalysts: inorganic nanosheets modified with α-amino acids as ligands[J]. Angewandte Chemie International Edition, 2011, 50(39): 9171-9176. |
30 | Liu H, An Z, He J. Nanosheet-enhanced rhodium(Ⅲ)-catalysis in C–H activation[J]. ACS Catalysis, 2014, 4(10): 3543-3550. |
31 | Leung D W J, Chen C P, Buffet J C, et al. Correlations of acidity-basicity of solvent treated layered double hydroxides/oxides and their CO2 capture performance[J]. Dalton Transactions, 2020, 49(27): 9306-9311. |
32 | Pang J F, Zheng M Y, He L, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts[J]. Journal of Catalysis, 2016, 344: 184-193. |
33 | 黄艳丽, 李晓东, 黄伟. Mg/Al比对CH4-CO2重整制合成气 Mg(Ni, Al)O复合氧化物催化剂性能的影响[J]. 天然气化工(C1化学与化工), 2019, 44(6): 8-13, 19. |
Huang Y L, Li X D, Huang W. Effect of Mg/Al ratio on catalytic performance of Mg(Ni, Al)O composite oxide catalyst for CH4-CO2 reforming[J]. Natural Gas Chemical Industry, 2019, 44(6): 8-13, 19. | |
34 | 王琴, 李枫, 赵海宏, 等. 过渡金属改性Mg-Al基固体碱催化剂上碳酸丙烯酯与甲醇合成碳酸二甲酯的研究[J]. 燃料化学学报, 2020, 48(4): 448-455. |
Wang Q, Li F, Zhao H H, et al. Preparation of Mg-Al based solid base for the transesterification of propylene carbonate and methanol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 448-455. | |
35 | Wang D F, Zhang X L, Liu C L, et al. Transition metal-modified mesoporous Mg-Al mixed oxides: stable base catalysts for the synthesis of diethyl carbonate from ethyl carbamate and ethanol[J]. Applied Catalysis A: General, 2015, 505: 478-486. |
36 | Wang D F, Zhang X L, Cong X S, et al. Influence of Zr on the performance of Mg-Al catalysts via hydrotalcite-like precursors for the synthesis of glycerol carbonate from urea and glycerol[J]. Applied Catalysis A: General, 2018, 555: 36-46. |
37 | Wang H M, Bing W H, Chen C Y, et al. Geometric effect promoted hydrotalcites catalysts towards aldol condensation reaction[J]. Chinese Journal of Catalysis, 2020, 41(8): 1279-1287. |
38 | 王军, 赵妍, 邹欣, 等. KF改性MgAl水滑石催化酯交换合成碳酸乙烯酯[J]. 化工进展, 2020, 39(7): 2670-2676. |
Wang J, Zhao Y, Zou X, et al. Synthesis of ethylene carbonate by transesterification over KF modified MgAl hydrotalcite catalyst[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2670-2676. | |
39 | Lei X D, Lu W, Peng Q, et al. Activated MgAl-layered double hydroxide as solid base catalysts for the conversion of fatty acid methyl esters to monoethanolamides[J]. Applied Catalysis A: General, 2011, 399(1/2): 87-92. |
40 | Evans D, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]. Chem. Commun., 2006, 37: 485-496. |
41 | Hidalgo J M, Jiménez-Sanchidrián C, Ruiz J R. Delaminated layered double hydroxides as catalysts for the Meerwein-Ponndorf-Verley reaction[J]. Applied Catalysis A: General, 2014, 470: 311-317. |
42 | Qiu X H, Sasaki K, Osseo-Asare K, et al. Sorption of H3BO3/ B(OH)4- on calcined LDHs including different divalent metals[J]. Journal of Colloid and Interface Science, 2015, 445: 183-194. |
43 | 张曼, 赵云良, 吴飞达. 焙烧态Ca-Mg-Al类水滑石的制备及其吸附As(Ⅴ)的研究[J]. 硅酸盐通报, 2018, 37(4): 1344-1349, 1354. |
Zhang M, Zhao Y L, Wu F D. Preparing calcined Ca-Mg-Al hydrotalcite-like compound for adsorption of As(Ⅴ) in water[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1344-1349, 1354. | |
44 | Hou T L, Yan L G, Li J, et al. Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent[J]. Chemical Engineering Journal, 2020, 384: 123331. |
45 | Li J, Yan L G, Yang Y T, et al. Insight into the adsorption mechanisms of aqueous hexavalent chromium by EDTA intercalated layered double hydroxides: XRD, FTIR, XPS, and zeta potential studies[J]. New Journal of Chemistry, 2019, 43(40): 15915-15923. |
46 | Li J, Yu H Q, Zhang X, et al. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(Ⅵ) and Congo red: adsorptive and mechanistic study[J]. Frontiers of Environmental Science & Engineering, 2020, 14(3): 1-13. |
47 | Ma L J, Wang Q, Islam S M, et al. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42- ion[J]. Journal of the American Chemical Society, 2016, 138(8): 2858-2866. |
48 | Ma L J, Islam S M, Xiao C L, et al. Rapid simultaneous removal of toxic anions [HSeO3]-, [SeO3]2-, and [SeO4]2-, and metals Hg2+, Cu2+, and Cd2+ by MoS42- intercalated layered double hydroxide[J]. Journal of the American Chemical Society, 2017, 139(36): 12745-12757. |
49 | Ma L J, Islam S M, Liu H Y, et al. Selective and efficient removal of toxic oxoanions of As(Ⅲ), As(V), and Cr(Ⅵ) by layered double hydroxide intercalated with MoS42-[J]. Chemistry of Materials, 2017, 29(7): 3274-3284. |
50 | Shuan D L, Wang D D, Wu X F, et al. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides[J]. Chinese Journal of Catalysis, 2020, 41(4): 550-560. |
51 | Genty E, Cousin R, Capelle S, et al. Catalytic oxidation of toluene and CO over nanocatalysts derived from hydrotalcite-like compounds (X62+Al23+): effect of the bivalent cation[J]. European Journal of Inorganic Chemistry, 2012, (16): 2802-2811. |
52 | Aguilera D A, Perez A, Molina R, et al. Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 144-150. |
53 | Palacio L A, Velásquez J, Echavarría A, et al. Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 407-413. |
54 | Lara-García H A, Gao W L, Gómez-Cortés A, et al. High and efficient CO2 capture in molten nitrate-modified Mg-Al-palmitate layered double oxides at high pressures and elucidation of carbonation mechanisms by in situ DRIFT spectroscopy analysis[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5501-5509. |
55 | Gao W L, Zhou T T, Wang Q. Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under different adsorption conditions[J]. Chemical Engineering Journal, 2018, 336: 710-720. |
56 | Zhang S Y, Fan G L, Li F. Lewis-base-promoted copper-based catalyst for highly efficient hydrogenation of dimethyl 1, 4-cyclohexane dicarboxylate[J]. Green Chemistry, 2013, 15(9): 2389. |
57 | Xia S X, Zheng L P, Wang L N, et al. Hydrogen-free synthesis of 1, 2-propanediol from glycerol over Cu-Mg-Al catalysts[J]. RSC Advances, 2013, 3(37): 16569-16576.. |
58 | Xia S X, Nie R F, Lu X Y, et al. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMgxAl2O8.6 catalysts: the role of basicity and hydrogen spillover[J]. Journal of Catalysis, 2012, 296: 1-11. |
59 | Zhao M Q, Zhang Q, Zhang W, et al. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides[J]. Journal of the American Chemical Society, 2010, 132(42): 14739-14741. |
60 | Wang L Y, Liu J F, Zhou Y X, et al. Synthesis of CoFe alloy nanoparticles embedded in a MgO crystal matrix using a single-source inorganic precursor[J]. Chemical Communications, 2010, 46(22): 3911-3913. |
61 | Gao W, Li C M, Chen H, et al. Supported nickel–iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O[J]. Green Chemistry, 2014, 16(3): 1560-1568. |
62 | He Y F, Fan J X, Feng J T, et al. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: effect of support acidic and basic properties[J]. Journal of Catalysis, 2015, 331: 118-127. |
63 | Jin X J, Koizumi Y, Yamaguchi K, et al. Selective synthesis of primary anilines from cyclohexanone oximes by the concerted catalysis of a Mg-Al layered double hydroxide supported Pd catalyst[J]. Journal of the American Chemical Society, 2017, 139(39): 13821-13829. |
64 | Zhu Y R, An Z, He J. Single-atom and small-cluster Pt induced by Sn (Ⅳ) sites confined in an LDH lattice for catalytic reforming[J]. Journal of Catalysis, 2016, 341: 44-54. |
65 | Zhu Y R, An Z, Song H Y, et al. Lattice-confined Sn (Ⅳ/Ⅱ) stabilizing raft-like Pt clusters: high selectivity and durability in propane dehydrogenation[J]. ACS Catalysis, 2017, 7(10): 6973-6978. |
66 | Belskaya O B, Stepanova L N, Nizovskii A I, et al. The effect of tin on the formation and properties of Pt/MgAl(Sn)Ox catalysts for dehydrogenation of alkanes[J]. Catalysis Today, 2019, 329: 187-196. |
67 | Zhang J B, Li X L, Xu M, et al. Glycerol aerobic oxidation to glyceric acid over Pt/hydrotalcite catalysts at room temperature[J]. Science Bulletin, 2019, 64(23): 1764-1772. |
68 | Zhang X, Cui G Q, Feng H S, et al. Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis[J]. Nature Communications, 2019, 10: 5812. |
69 | Dimitratos N, Lopez-Sanchez J A, Hutchings G J. Selective liquid phase oxidation with supported metal nanoparticles[J]. Chem. Sci., 2012, 3(1): 20-44. |
70 | Mitsudome T, Noujima A, Mizugaki T, et al. Efficient aerobic oxidation of alcohols using a hydrotalcite-supported gold nanoparticle catalyst[J]. Advanced Synthesis & Catalysis, 2009, 351(11/12): 1890-1896. |
71 | Zhang F Z, Zhao X F, Feng C H, et al. Crystal-face-selective supporting of gold nanoparticles on layered double hydroxide as efficient catalyst for epoxidation of styrene[J]. ACS Catalysis, 2011, 1(4): 232-237. |
72 | Wang L, Zhang J, Meng X J, et al. Superior catalytic properties in aerobic oxidation of alcohols over Au nanoparticles supported on layered double hydroxide[J]. Catalysis Today, 2011, 175(1): 404-410. |
73 | Du Y, Wooler B, Weiss B, et al. A unique method to disperse Au nanoparticles at ultra-high loading via LDH intercalation chemistry[J]. Dalton Transactions, 2019, 48(7): 2505-2509. |
74 | An Z, MA H H, Han H B, et al. Insights into the multiple synergies of supports in the selective oxidation of glycerol to dihydroxyacetone: layered double hydroxide supported Au[J]. ACS Catalysis, 2020, 10(21): 12437-12453. |
75 | Wang Z T, Song Y J, Zou J H, et al. The cooperation effect in the Au–Pd/LDH for promoting photocatalytic selective oxidation of benzyl alcohol[J]. Catalysis Science & Technology, 2018, 8(1): 268-275. |
76 | Wang J Y, Mei X Y, Huang L, et al. Synthesis of layered double hydroxides/graphene oxide nanocomposite as a novel high-temperature CO2 adsorbent[J]. Journal of Energy Chemistry, 2015, 24(2): 127-137. |
77 | Álvarez M G, Frey A M, Bitter J H, et al. On the role of the activation procedure of supported hydrotalcites for base catalyzed reactions: glycerol to glycerol carbonate and self-condensation of acetone[J]. Applied Catalysis B: Environmental, 2013, 134/135: 231-237. |
78 | Zou Y D, Wang P Y, Yao W, et al. Synergistic immobilization of UO22+ by novel graphitic carbon nitride @ layered double hydroxide nanocomposites from wastewater[J]. Chemical Engineering Journal, 2017, 330: 573-584. |
79 | Guo Y J, Fan L P, Liu M R, et al. Nitrogen-doped carbon quantum dots-decorated Mg-Al layered double hydroxide-supported gold nanocatalysts for efficient base-free oxidation of benzyl alcohol[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 636-646. |
80 | Yang Q, Xu Q, Jiang H L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017, 46(15): 4774-4808. |
81 | Lv Z, Yang S M, Chen L, et al. Enhanced removal of uranium(Ⅵ) from aqueous solution by a novel LDH@MOF-76 composite[J]. Scientia Sinica Chimica, 2019, 49(1): 53-64. |
82 | Li Z H, Shao M F, Zhou L, et al. Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction[J]. Advanced Materials, 2016, 28(12): 2337-2344. |
83 | Li J B, Chen C Y, Chen Y W, et al. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries[J]. Advanced Energy Materials, 2019, 9(42): 1901935. |
84 | Qiu C H, Hao X J, Tan L, et al. 500 nm induced tunable syngas synthesis from CO2 photoreduction by controlling heterojunction concentration[J]. Chemical Communications, 2020, 56(40): 5354-5357. |
85 | Gao Y P, Wei Z N, Xu J. High-performance asymmetric supercapacitor based on 1T-MoS2 and MgAl-layered double hydroxides[J]. Electrochimica Acta, 2020, 330: 135195. |
86 | Dong J N, Zhang X N, Huang J Y, et al. In-situ formation of unsaturated defect sites on converted CoNi alloy/Co-Ni LDH to activate MoS2 nanosheets for pH-universal hydrogen evolution reaction[J]. Chemical Engineering Journal, 2021, 412: 128556. |
87 | Takahashi Y, Uchida H, Kameda T, et al. Synthesis of MnO2/Mg-Al layered double hydroxide and evaluation of its NO-removal performance[J]. Journal of Alloys and Compounds, 2021, 867: 159038. |
88 | Iqbal K, Iqbal A, Kirillov A M, et al. A new Ce-doped MgAl-LDH@Au nanocatalyst for highly efficient reductive degradation of organic contaminants[J]. Journal of Materials Chemistry A, 2017, 5(14): 6716-6724. |
89 | Jiang B B, Xi Z X, Lu F P, et al. Ce/MgAl mixed oxides derived from hydrotalcite LDH precursors as highly efficient catalysts for ketonization of carboxylic acid[J]. Catalysis Science & Technology, 2019, 9(22): 6335-6344. |
90 | Shamsayei M, Yamini Y, Asiabi H. Layer-by-layer assembly of layered double hydroxide/histidine/δ-MnO2 nanosheets: synthesis, characterization, and applications[J]. Applied Clay Science, 2020, 188: 105540. |
91 | Mi F, Chen X T, Ma Y W, et al. Facile synthesis of hierarchical core-shell Fe3O4@MgAl–LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcohols[J]. Chemical Communications, 2011, 47(48): 12804-12806. |
92 | Shan R R, Yan L G, Yang K, et al. Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution[J]. Chemical Engineering Journal, 2014, 252: 38-46. |
93 | Huang Q Q, Chen Y, Yu H Q, et al. Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: one-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+[J]. Chemical Engineering Journal, 2018, 341: 1-9. |
94 | Hou T L, Yan L G, Yang S Y, et al. Efficient removal of graphene oxide by Fe3O4/MgAl-layered double hydroxide and oxide from aqueous solution[J]. Journal of Molecular Liquids, 2019, 284: 300-306. |
95 | Cui L M, Wang Y G, Gao L, et al. EDTA functionalized magnetic graphene oxide for removal of Pb(Ⅱ), Hg(Ⅱ) and Cu(Ⅱ) in water treatment: adsorption mechanism and separation property[J]. Chemical Engineering Journal, 2015, 281: 1-10. |
96 | 李嘉雯, 郝瑞霞, 李宏康, 等. 磁性Mg/Al-LDHs制备条件对其吸附除磷性能的影响[J]. 环境科学学报, 2020, 40(2): 520-526. |
Li J W, Hao R X, Li H K, et al. Adsorption performance of phosphorus by magnetic Mg/Al-LDHs prepared under different conditions[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 520-526. |
[1] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[2] | 白天昊, 王晓雯, 杨梦滋, 段新伟, 米杰, 武蒙蒙. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J]. 化工学报, 2023, 74(4): 1772-1780. |
[3] | 马嘉壮, 陈颖, 李凯涛, 林彦军. 镁基插层结构功能材料研究进展[J]. 化工学报, 2021, 72(6): 2922-2933. |
[4] | 田锐, 王沛力, 吕超, 段雪. 有机-无机复合材料中无机相分散度三维荧光分析[J]. 化工学报, 2021, 72(6): 3002-3013. |
[5] | 杜冬冬, 刘欢, 马若愚, 冯拥军, 李殿卿, 唐平贵. 基于分子间作用力组装的镁铝水滑石光稳定剂及其性能研究[J]. 化工学报, 2021, 72(6): 3095-3104. |
[6] | 王晓波,赵青山,程智年,张浩然,胡涵,王路海,吴明铂. 高性能碳基储能材料的设计、合成与应用[J]. 化工学报, 2020, 71(6): 2660-2677. |
[7] | 来天艺,王纪康,李天,白莎,郝晓杰,赵宇飞,段雪. 光电解水产活性氢/氧耦合加氢/氧化过程用水滑石基纳米材料[J]. 化工学报, 2020, 71(10): 4327-4349. |
[8] | 卫彩云, 谭静静, 夏晓丽, 赵永祥. 焙烧温度对CuMgAl催化剂催化糠醇加氢制戊二醇的影响[J]. 化工学报, 2019, 70(4): 1409-1419. |
[9] | 吴小平, 王晨光, 张琦, 刘琪英, 张兴华, 马隆龙. PtSn-Mg(Zn)AlO催化剂应用于乙烷脱氢反应研究[J]. 化工学报, 2019, 70(11): 4268-4277. |
[10] | 程爱华, 钱大鹏. 棉花模板Zn/Ti/Fe-LDO吸附水中硝酸盐机制[J]. 化工学报, 2018, 69(12): 5283-5291. |
[11] | 岳源源, 郑晓桂, 康颖, 白正帅, 袁珮, 朱海波, 鲍晓军. 基于镁铝水滑石的Mo/Al2O3-MgO催化剂制备及其加氢脱硫性能[J]. 化工学报, 2018, 69(1): 405-413. |
[12] | 李冰洋, 刘珍豪, 王保国. 聚偏氟乙烯纳米多孔膜结构调控及离子传递特性[J]. 化工学报, 2017, 68(2): 732-738. |
[13] | 赵红, 徐晓敏, 徐建鸿, 王涛, 骆广生. 微流控制备壳聚糖功能材料研究进展[J]. 化工学报, 2016, 67(2): 373-378. |
[14] | 王瑞瑞, 赵有璟, 邵明飞, 项顼, 段雪. 层状双金属氢氧化物用于催化水氧化的研究进展[J]. 化工学报, 2016, 67(1): 54-72. |
[15] | 徐圣, 廖梦尘, 曾虹燕, 朱培函, 张治青, 黄清军, 刘小军, 张伟. Mg-Al水滑石的溶解动力学及热力学[J]. 化工学报, 2014, 65(8): 2863-2868. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1092
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1016
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||