化工学报 ›› 2016, Vol. 67 ›› Issue (1): 54-72.DOI: 10.11949/j.issn.0438-1157.20151766
王瑞瑞, 赵有璟, 邵明飞, 项顼, 段雪
收稿日期:
2015-11-26
修回日期:
2015-12-14
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
项顼
基金资助:
国家重点基础研究发展计划项目(2014CB932104);国家自然科学基金项目(21376020);北京市自然科学基金项目(2152022);中央高校基本科研业务费专项资金资助(YS1406)。
WANG Ruirui, ZHAO Youjing, SHAO Mingfei, XIANG Xu, DUAN Xue
Received:
2015-11-26
Revised:
2015-12-14
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Basic Research Program of China (2014CB932104), the National Natural Science Foundation of China (21376020) and the Natural Science Foundation of Beijing (2152022).
摘要:
通过太阳能光解水制取能源(如氢气)是开发清洁能源的重要途径之一,而水分解的半反应——水氧化过程是整体水分解的重要环节与限速步。发展高效、稳定、易获取的水氧化催化剂是实现有效水分解的关键。层状双金属氢氧化物(layered double hydroxides, LDHs)由于其独特的二维层状结构与灵活调变的化学组成,近年来作为水氧化反应催化剂受到研究者越来越多的关注。除用于电化学水氧化的催化剂外,LDHs在光(电)催化水氧化方面也表现出独特的优势。研究者正致力于LDHs基高效水氧化催化剂的研究,取得了很好的进展。主要综述了LDHs及其复合结构在催化水氧化方面的最新研究进展,以期为水氧化催化剂的结构设计与性能增强提供新的思路。
中图分类号:
王瑞瑞, 赵有璟, 邵明飞, 项顼, 段雪. 层状双金属氢氧化物用于催化水氧化的研究进展[J]. 化工学报, 2016, 67(1): 54-72.
WANG Ruirui, ZHAO Youjing, SHAO Mingfei, XIANG Xu, DUAN Xue. Recent progresses in water oxidation over layered double hydroxide catalysts[J]. CIESC Journal, 2016, 67(1): 54-72.
[1] | LEWIS N S, NOCERA D G. Powering the planet: chemical challenges in solar energy utilization [J]. Proc. Natl. Acad. Sci. USA, 2006, 103: 15729-15735. |
[2] | NOCERA D G. The artificial leaf [J]. Acc. Chem. Res., 2012, 45: 767-776. |
[3] | MEDA L, ABBONDANZA L. Materials for photo-electrochemical water splitting [J]. Rev. Adv. Sci. Eng.,2013, 2: 200-207. |
[4] | RAN J, ZHANG J, YU J G. Earth-abundant cocatalysts for semiconductorbased photocatalytic water splitting [J]. Chem. Soc. Rev.,2014, 43: 7787-7812. |
[5] | YANG Y F, ZHOU Y H, Chat C S. Electrochemical reduction of oxygen on small palladiun particles supported on carbon in alkaline solution [J]. Elecrrochimica Acta,1995, 40(16): 2579-2586. |
[6] | 张玉萍,鞠鹤,武宏让,等.铂钛不溶性阳极研制 [J]. 表面技术, 2002, 31(4): 37-39.ZHANG Y P, HE J, WU H R, et al. Preparation of Pt/Ti insoluble anodes [J]. Surface Technology, 2002, 31(4): 37-39. |
[7] | 张玉萍,鞠鹤,武宏让,等.铂复合电极研究进展 [J].表面技术,2005, 34(5): 16-18. ZHANG Y P, HE J, WU H R, et al. Advancement of platinum composite electrode [J]. Surface Technology, 2005, 34(5): 16-18. |
[8] | MUNICHANDRAIAH N. Physicochemical properties of electrodeposited β-lead dioxide : effect of deposition current density [J]. Appl. Electrochem., 1992, 22(1): 825-829. |
[9] | 孙凤梅,潘建跃,罗启富,等. PbO2阳极材料的研究进展 [J]. 兵器材料科学与工程,2004, 27 (1): 68-72.SUN F M, PAN J Y, LUO Q F, et al. Advancement of PbO2 anodes materials [J]. Ordnance Material Science and Engineering, 2004, 27 (1): 68-72. |
[10] | 黄庆华,李振亚,王为.电池用氧电极催化剂的研究现状 [J].电源技术,2003,27:241-244.HUANG Q H, LI Z Y, WANG W. State-of-art of research on electrocatalyst for oxygen electrode in battery [J]. Chinese Journal of Power Sources, 2003, 27:241-244. |
[11] | JAAKKO L, JUHANI K, MARKKU J L, et al. Preparation of air electrodes and long run tests [J]. J. Electrochem. Soc., 1991, 138: 905-908. |
[12] | 蒋太祥, 史鹏飞, 李君.铝空气电池氧电极催化剂的工艺研究 [J].电源技术, 1994, 2: 23.JIANG T X, SHI P F, LI J. Study on oxygen electrode catalyst for aluminum-air batteries [J]. Chinese Journal of Power Sources, 1994, 2: 23. |
[13] | BOCKRIS J O M, TAKAAKL O. Mechanism of oxygen evolution on perovskites [J]. J. Phys. Chem., 1983, 87: 2960-2971. |
[14] | Kobussen A G C, Broers G H L. The oxygen evolution on La0.5Ba0.5CoO3: theoretical impedance behaviour for a multi-step mechanism involving two adsorbates[J]. J. Electroanal. Chem., 1981, 126: 221-240. |
[15] | TSWEM S D, JOE H B. Morphology and electrochemical activity of Ru-Ti-Sn ternary-oxide electrodes in 1M NaCl solution [J]. J. Electrochem. Soc., 1993, 38(15): 2239-2246. |
[16] | GILEADI E, KIROWA E E, PENCINER J. Interfacial Electrochemistry: an Experimental Approach [M]. Reading, MA, United States: Addison-Wesley Publishing Co., Inc., 1975: 438. |
[17] | ZHANG P, WANG T, GONG J L. Mechanistic understanding of the plasmonic enhancement for solar water splitting [J]. Adv. Mater., 2015, 27: 5328-5342. |
[18] | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38. |
[19] | BARD A J. Photoelectrochemistry [J]. Science, 1980, 207: 139-144. |
[20] | CHEMELEWSKI W D, LEE H C, LIN J F, et al. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting [J]. J. Am. Chem. Soc., 2014, 136: 2843-2850. |
[21] | GRATZEL M. Photoelectrochemical cells [J]. Nature, 2001, 414: 338-344. |
[22] | TILLEY S D, CORNUZ M, SIVULA K, et al. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis [J]. Angew. Chem. Int. Ed., 2010, 49: 6405-6408. |
[23] | SUN J, ZHONG D K, GAMELIN D R. Composite photoanodes for photoelectrochemical solar water splitting [J]. Energy Environ. Sci., 2010, 3: 1252-1261. |
[24] | REECE S Y, HAMEL J A, SUNG K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts [J]. Science, 2011, 334: 645-648. |
[25] | GAN J, LU X, TONG Y. Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation [J]. Nanoscale, 2014, 6: 7142-7164. |
[26] | SUSAN W G, GEORGE J S, THOMAS J M. Catalytic oxidation of water by an oxo-bridged ruthenium dimer [J]. J. Am. Chem. Soc., 1982, 104 (14): 4029-4030. |
[27] | YIN Q S, JEFFREY M T, CLAIRE B, et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals [J]. Science, 2010, 328: 342-345. |
[28] | LV H J, GELETII Y V, ZHAO C C, et al. Polyoxometalate water oxidation catalysts and the production of green fuel [J]. Chem. Soc. Rev., 2012, 41: 7572-7589. |
[29] | SONG F Y, DING Y, MA B C, et al. K7[CoIIICoII(H2O)W11O39]: a molecular mixed-valence keggin polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation [J]. Energy Environ. Sci., 2013, 6: 1170-1184. |
[30] | LV H J, SONG J, YURII V G et al. An exceptionally fast homogeneous carbon-free cobalt-based water oxidation catalyst polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation [J]. J. Am. Chem. Soc., 2014, 136: 9268-9271. |
[31] | RODNEY D L S, MATHIEU S P, RANDAL D F, et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis [J]. Science, 2013, 340: 60-63. |
[32] | XIANG X, FIELDEN J, WILLIAM R C, et al. Electron transfer dynamics in semiconductor-chromophore-polyoxometalate catalyst photoanodes [J]. J. Phys. Chem. C, 2013, 117: 918-926. |
[33] | MATT B, XIANG X, ALEXEY L, et al. Long lived charge separation in iridium(Ⅲ)-photosensitized polyoxometalates: synthesis, photophysical and computational studies of organometallic-redox tunable oxide assemblies [J]. Chem. Sci., 2013, 4: 1737-1745. |
[34] | FIELDEN J, SUMLINER J M, HAN N, et al. Water splitting with polyoxometalate-treated photoanodes: enhancing performance through sensitizer design [J]. Chem. Sci., 2015, 6: 5531-5543. |
[35] | ARINDAM I, PRASHANTH W M, NASTARAN R, et al. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides [J].J. Am. Chem. Soc., 2014, 136: 17530-17536. |
[36] | QI J, ZHANG W, XIANG R, et al. Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction [J]. Adv. Sci., 2015, 2: 1500199. |
[37] | CARLOS G M, MATTHEW T M, ASWANI Y, et al. An optically transparent iron nickel oxide catalyst for solar water splitting [J]. J. Am. Chem. Soc., 2015, 137: 9927-9936. |
[38] | WANG T, GONG J L. Single-crystal semiconductors with narrow band gaps for solar water splitting [J]. Angew. Chem. Int. Ed., 2015, 54: 10718-10732. |
[39] | LI L D, YAN J Q, WANG T, et al. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production [J]. Nature Commun., 2015, 6: 5881. |
[40] | LI K, WANG G, LI D, et al. Intercalation assembly method and intercalation process control of layered intercalated functional materials [J].Chinese Journal of Chemical Engineering, 2013, 21(4): 453-462. |
[41] | DAVID G E, DUAN X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]. Chem. Commun., 2006: 485-496. |
[42] | WANG Q, DERMOT O. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets [J]. Chem. Rev., 2012, 112, 4124-4155 . |
[43] | 安哲, 何静, 段雪. 层状材料及催化 [J]. 中国科学: 化学, 2012, 42(4): 390-405.AN Z, HE J, DUAN X. Layered double hydroxide and catalyst [J]. Scientia Sinica Chimica, 2012, 42(4): 390-405. DOI: 10.1360/ 032011-846. |
[44] | 安哲, 何静, 段雪. 基于层状前驱体制备活性位高分散催化材料 [J]. 催化学报, 2013, 34: 225-234.AN Z, HE J, DUAN X. Catalysts with catalytic sites highly dispersed from layered double hydroxide as precursors [J]. Chin. J. Catal., 2013, 34: 225-234. |
[45] | 闫东鹏, 陆军, 段雪. 层状复合金属氢氧化物: 主客体结构研究进展 [J]. 中国科学: 化学, 2013, 43(1): 1-14.YAN D P, LU J, DUAN X. Layered double hydroxide: research progress of host-guest structure [J]. Scientia Sinica Chimica , 2013, 43(1): 1-14. DOI: 10.1360 /03 2012-463. |
[46] | YAN D P, LU J, WEI M, et al. Recent advances in photofunctional guest/layered double hydroxide host composite systems and their applications: experimental and theoretical perspectives [J]. J. Mater. Chem., 2011, 21: 13128-13139. |
[47] | HE S, AN Z, WEI M, et al. Layered double hydroxide-based catalysts: nanostructure design and catalytic performance [J]. Chem. Commun., 2013, 49: 5912-5920. |
[48] | GONG M, LI Y, ZHANG L, et al. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide [J]. Energy Environ. Sci., 2014, 7: 2025-2032. |
[49] | CARLOS G M, MATTHEW T M, ASWANI Y, et al. An optically transparent iron nickel oxide catalyst for solar water splitting [J]. J. Am. Chem. Soc., 2015, 137: 9927-9936. |
[50] | GONZALO A J, CARRASCO E C, JORGE R, et al. Alkoxide-intercalated CoFe-layered doublehydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical properties [J]. J. Mater. Chem. C, 2014, 2, 3723-3731. |
[51] | LIANG H, MENG F, MIGUEL C A, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. [J]. Nano Lett., 2015, 15: 1421-1427. |
[52] | YANG Q, LI T, LU Z, et al. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction [J]. Nanoscale, 2014, 6: 11789-11794. |
[53] | ZHANG Y, CUI B, ZHAO C, et al. Co-Ni layered double hydroxides for water oxidation in neutral electrolyte [J]. Phys. Chem. Chem. Phys., 2013, 15: 7363-7369. |
[54] | SHAO M F, WEI M, DAVID G E, et al. Magnetic-field-assisted assembly of CoFe layered double hydroxide ultrathin films with enhanced electrochemical behavior and magnetic anisotropy [J]. Chem. Commun., 2011, 47: 3171-3173. |
[55] | GENNEQUIN C, KOUASSI S, TIDAHY L, et al. Co-Mg-Al oxides issued of hydrotalcite precursors for total oxidation of volatile organic compounds. Identification and toxicological impact of the by-products [J]. C R Chimie, 2010, 13: 494-501. |
[56] | SLIVA C G, BOUIZI Y, FORNES V, et al. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water [J]. J. Am. Chem. Soc., 2009, 131: 13833-13839. |
[57] | WANG H, TANG C, ZHANG Q. Towards superior oxygen evolution through graphene barriers between metal substrates and hydroxide catalysts [J]. J. Mater. Chem. A, 2015, 3: 16183-16189. |
[58] | ZHAO X, ZHANG F, XU S, et al. From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking prosperities of the product [J]. Chem. Mater., 2010, 22: 3933-3942. |
[59] | MYONG A W, MIN S S, TAE W K, et al. Mixed valence Zn-Co-layered double hydroxides and their exfoliated nanosheets with electrode functionality [J]. J. Mater. Chem., 2011, 21: 4286-4292. |
[60] | ZHAO X, ANANDARUP G, TEWODROS A. Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide [J]. J. Am. Chem. Soc., 2013, 135: 17242-17245. |
[61] | LI Y, ZHANG L, XIANG X, et al. Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation [J]. J. Mater. Chem. A, 2014, 2: 13250-13258. |
[62] | QIAO C, ZHANG Y, ZHU Y, et al. One-step synthesis of zinc-cobalt layered double hydroxide (Zn-Co-LDH) nanosheets for high efficiency oxygen evolution reaction [J]. J. Mater. Chem. A, 2015, 3: 6878-6883. |
[63] | LU Z, XU W, ZHU W, et al. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction [J].Chem. Commun., 2014, 50: 6479-6482. |
[64] | HAN N, ZHAO F, LI Y. Ultrathin nickel-iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation [J]. J. Mater. Chem. A, 2015, 3: 16348-16353. |
[65] | XU Y, HAO Y, ZHANG G, et al. Room-temperature synthetic NiFe layered double hydroxide with different anions intercalation as an excellent oxygen evolution catalyst [J]. RSC Adv., 2015, 5: 55131-55135. |
[66] | LI Z H, SHAO M F, AN H L, et al. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions [J]. Chem. Sci., 2015, 6: 6624-6631. |
[67] | ZHANG Y, CUI B, ZHAO C, et al. Co-Ni layered double hydroxides for water oxidation in neutral electrolyte [J]. Phys. Chem. Chem. Phys., 2013, 15: 7363-7369. |
[68] | SONG F, HU X L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst [J]. J. Am. Chem. Soc., 2014, 136: 16481-16484. |
[69] | WANG S, NAI S, YANG S, et al. Synthesis of amorphous Ni-Zn double hydroxide nanocages with excellent electrocatalytic activity toward oxygen evolution reaction [J]. ChemNanoMat., 2015, 1: 324-330. |
[70] | YANG Q, LI T, LU Z, et al. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction [J]. Nanoscale, 2014, 6: 11789-11794. |
[71] | LONG X, XIAO S, WANG Z, et al. Co intake mediated formation of ultrathin nanosheets of transition metal LDH-an advanced electrocatalyst for oxygen evolution reaction [J]. Chem. Commun., 2015, 51: 1120-1123. |
[72] | LU Z Y, QIAN L, TIAN Y, et al. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts [J]. Chem. Commun., 2016, DOI: 10.1039/c5cc08845c. |
[73] | HAN N, ZHAO F P, LI Y G. Ultrathin nickel-iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation [J]. J. Mater. Chem. A, 2015, 3: 16348-16353. |
[74] | GONG M, LI Y, Wang H, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation [J]. J. Am. Chem. Soc., 2013, 135: 8452-8455. |
[75] | JAYAVANT L G, In Y K, JANG M L, et al. Self-assembly of layered double hydroxide 2D nanoplates with graphene nanosheets: an effective way to improve the photocatalytic activity of 2D nanostructured materials for visible light-induced O2 generation [J]. Energy Environ. Sci., 2013, 6: 1008-1017. |
[76] | LI B, ZHAO Y, ZHANG S, et al. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-Layered double hydroxide/reduced graphene oxide composite materials [J]. ACS Appl. Mater. Interfaces, 2013, 5: 10233-10239. |
[77] | DUCK H Y, YOON B P, JAE Y K, et al. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation [J]. Journal of Power Sources, 2015, 294: 437-443. |
[78] | WANG H, TANG C, ZHANG Q. Towards superior oxygen evolution through graphene barriers between metal substrates and hydroxide catalysts [J]. J. Mater. Chem. A, 2015, 3: 16183-16189. |
[79] | XIA D C, ZHOU L, QIAO S, et al. Graphene/Ni-Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation [J]. Materials Research Bulletin 2016, 74: 441-446. |
[80] | ZHU X L, TANG C, WANG H F, et al. Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts [J]. J. Mater. Chem. A, 2015, 3: 24540-24546. |
[81] | TANG C, WANG H S, WANG H F, et al. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity [J]. Adv. Mater., 2015, 27: 4516-4522. |
[82] | TANG D, LIU J, WU X, et al. Carbon quantum Dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation [J]. ACS Appl. Mater. Interfaces, 2014, 6: 7918-7925. |
[83] | LENA T, SAMANTHA L Y, JAMES K R, et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation [J]. J. Am. Chem. Soc., 2014, 136: 6744-6753. |
[84] | SHAO M, ZHANG R, LI Z, et al. Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications [J]. Chem. Commun., 2015, 51: 15880-15893 |
[85] | ZHAO Y F, CHEN P Y, ZHANG B S, et al .Highly dispersed TiO6 units in a layered double hydroxide for water splitting [J]. Chem. Eur. J., 2012, 18: 11949-11958. |
[86] | YEOB L, JUNG H C, HYUNG J J, et al. Titanium-embedded layered double hydroxides as highly efficient water oxidation photocatalysts under visible light [J]. Energy Environ. Sci., 2011, 4: 914-920. |
[87] | XU S M, PAN T, DOU Y B, et al. Theoretical and experimental study on MIIMIII-Layered double hydroxides as efficient photocatalysts toward oxygen evolution from water [J]. J. Phys. Chem. C, 2015, 119: 18823-18834. |
[88] | DOU Y, ZHANG S, PAN T, et al. TiO2@layered double hydroxide core-shell nanospheres with largely enhanced photocatalytic activity toward O2 generation [J]. Adv. Funct. Mater., 2015, 25: 2243-2249. |
[89] | CHO S, JANG J W, PARK Y B, et al. An exceptionally facile method to produce layered double hydroxides on a conducting substrate and their application for solar water splitting without an external bias [J]. Energy Environ. Sci., 2014, 7: 2301-2307. |
[90] | CLAUDIA G S, YOUNES B, VICENTE F, et al. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water [J]. J. Am. Chem. Soc., 2009, 131: 13833-13839. |
[91] | JAYAVANT L G, TAE W K, HYO N K, et al. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability [J]. J. Am. Chem. Soc., 2011, 133: 14998-15007. |
[92] | ZHAO Y, LI B, WANG Q, et al. NiTi-layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light [J]. Chem. Sci., 2014, 5: 951-958. |
[93] | SHAO M F, NING F, WEI M, et al. Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting [J]. Adv. Funct. Mater., 2014, 24: 580-586. |
[94] | HE W H, YANG Y, WANG L, et al. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy [J]. ChemSusChem., 2015, 8: 1568-1576. |
[95] | HE W H, WANG R R, ZHANG L, et al. Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multifunctional layered double hydroxide nanowalls [J]. J. Mater. Chem. A, 2015, 3: 17977-17982. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[8] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[9] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[12] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||