化工学报 ›› 2021, Vol. 72 ›› Issue (6): 2957-2971.DOI: 10.11949/0438-1157.20201829
收稿日期:
2020-12-16
修回日期:
2021-04-02
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
杨文胜
作者简介:
王晓丽(1995—),女,硕士研究生,基金资助:
Received:
2020-12-16
Revised:
2021-04-02
Online:
2021-06-05
Published:
2021-06-05
Contact:
YANG Wensheng
摘要:
近年来,随着新能源汽车和电子类产品的快速发展,锂及其化合物得到广泛应用,使得全球对锂资源需求量剧增,锂资源的开发利用也越来越受重视。因盐湖卤水中含有大量锂资源,近年来盐湖卤水选择性提锂成为研究热点和主要途径。盐湖提锂的多种技术方法中,电化学提锂具有高效节能、安全环保等优势而备受关注。本文对近年来国内外电化学方法提锂的研究工作进行了综述,包括工作电极和对电极的研究进展以及不同电化学提锂体系的构建等。另外,还对电化学方法提锂未来的发展方向给出了建议和展望。
中图分类号:
王晓丽, 杨文胜. 电化学提锂体系及其电极材料的研究进展[J]. 化工学报, 2021, 72(6): 2957-2971.
WANG Xiaoli, YANG Wensheng. Research progress of electrochemical lithium extraction systems and electrode materials[J]. CIESC Journal, 2021, 72(6): 2957-2971.
1 | Bowell R J, Lagos L, de los Hoyos C R, et al. Classification and characteristics of natural lithium resources[J]. Elements, 2020, 16(4): 259-264. |
2 | Xu X, Chen Y M, Wan P Y, et al. Extraction of lithium with functionalized lithium ion-sieves[J]. Progress in Materials Science, 2016, 84: 276-313. |
3 | Liu Y Y, Zhu Y Y, Cui Y. Challenges and opportunities towards fast-charging battery materials[J]. Nature Energy, 2019, 4(7): 540-550. |
4 | 卞维柏, 潘建明. 选择性吸附提锂材料的研究进展[J]. 化工进展, 2020, 39(6): 2206-2217. |
Bian W B, Pan J M. Research progress in selective adsorption materials for lithium extraction[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2206-2217. | |
5 | Yang S X, Zhang F, Ding H P, et al. Lithium metal extraction from seawater[J]. Joule, 2018, 2(9): 1648-1651. |
6 | 苏彤, 郭敏, 刘忠, 等. 全球锂资源综合评述[J]. 盐湖研究, 2019, 27(3): 104-111. |
Su T, Guo M, Liu Z, et al. Comprehensive review of global lithium resources[J]. Journal of Salt Lake Research, 2019, 27(3): 104-111. | |
7 | Sun Y, Wang Q, Wang Y H, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine[J]. Separation and Purification Technology, 2021, 256: 117807. |
8 | 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J]. 化工学报, 2018, 69(1): 141-155. |
Liu D F, Sun S Y, Yu J G. Research and development on technique of lithium recovery from salt lake brine[J]. CIESC Journal, 2018, 69(1): 141-155. | |
9 | Zhang Y, Hu Y H, Wang L, et al. Systematic review of lithium extraction from salt-lake brines via precipitation approaches[J]. Minerals Engineering, 2019, 139: 105868. |
10 | Xiao C, Zeng L. Thermodynamic study on recovery of lithium using phosphate precipitation method[J]. Hydrometallurgy, 2018, 178: 283-286. |
11 | Chen J, Lin S, Yu J G. High-selective cyclic adsorption and magnetic recovery performance of magnetic lithium-aluminum layered double hydroxides (MLDHs) in extracting Li+ from ultrahigh Mg/Li ratio brines[J]. Separation and Purification Technology, 2021, 255: 117710. |
12 | Wang S L, Chen X, Zhang Y, et al. Lithium adsorption from brine by iron-doped titanium lithium ion sieves[J]. Particuology, 2018, 41: 40-47. |
13 | 张瑞, 陆旗玮, 林森, 等. 铝系成型锂吸附剂性能测试评价与对比[J]. 化工学报, 2021, 72(6): 3053-3062. |
Zhang R, Lu Q W, Lin S, et al. Performance evaluation and comparison of aluminum-based granulated lithium adsorbent[J]. CIESC Journal, 2021, 72(6): 3053-3062. | |
14 | Su H, Li Z, Zhang J, et al. Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP, FeCl3 and P507[J]. Hydrometallurgy, 2020, 197: 105487. |
15 | Yang S C, Liu G W, Wang J F, et al. Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid[J]. Fluid Phase Equilibria, 2019, 493: 129-136. |
16 | Nie X Y, Sun S Y, Sun Z, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J]. Desalination, 2017, 403: 128-135. |
17 | Ying J D, Luo M J, Jin Y, et al. Selective separation of lithium from high Mg/Li ratio brine using single-stage and multi-stage selective electrodialysis processes[J]. Desalination, 2020, 492: 114621. |
18 | Xu P, Hong J, Xu Z Z, et al. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency[J]. Separation and Purification Technology, 2021, 258: 118042. |
19 | 乜贞, 伍倩, 卜令忠, 等. 青藏高原碳酸盐型锂盐湖开发技术[J]. 科技导报, 2017, 35(12): 49-54. |
Nie Z, Wu Q, Bu L Z, et al. Exploitation of carbonate lithium salt lake in Qinghai-Tibet Plateau[J]. Science & Technology Review, 2017, 35(12): 49-54. | |
20 | 卜令忠, 伍倩, 余疆江, 等. 一种太阳池提锂方法: 111470521A[P]. 2020-07-31. |
Bu L Z, Wu Q, Yu J J, et al. Solar pond lithium extraction method: 111470521A[P]. 2020-07-31. | |
21 | Yu J J, Zheng M P, Wu Q, et al. Extracting lithium from Tibetan Dangxiong Tso salt lake of carbonate type by using geothermal salinity-gradient solar pond[J]. Solar Energy, 2015, 115: 133-144. |
22 | 郝勇, 张启海, 李广汉, 等. 西藏结则茶卡和龙木错盐湖卤水协同提锂研究[J]. 无机盐工业, 2013, 45(6): 27-29. |
Hao Y, Zhang Q H, Li G H, et al. Synergistic lithium extraction from mixed brines of Jiezechaka and Longmucuo salt lakes in Tibet[J]. Inorganic Chemicals Industry, 2013, 45(6): 27-29. | |
23 | Liu D F, Sun S Y, Yu J G. A new high-efficiency process for Li+ recovery from solutions based on LiMn2O4/λ-MnO2 materials[J]. Chemical Engineering Journal, 2019, 377: 119825. |
24 | Zhao Z W, Si X F, Liu X H, et al. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials[J]. Hydrometallurgy, 2013, 133: 75-83. |
25 | Kim S, Joo H, Moon T, et al. Rapid and selective lithium recovery from desalination brine using an electrochemical system[J]. Environmental Science. Processes & Impacts, 2019, 21(4): 667-676. |
26 | Pasta M, Battistel A, La Mantia F. Batteries for lithium recovery from brines[J]. Energy & Environmental Science, 2012, 5(11): 9487-9491. |
27 | Kanoh H, Ooi K, Miyai Y, et al. Method and electrode for electrochemical recovery of lithium value from aqueous solution: US5198081[P]. 1993-03-30. |
28 | Kim S, Kang J S, Joo H, et al. Understanding the behaviors of λ-MnO2 in electrochemical lithium recovery: key limiting factors and a route to the enhanced performance[J]. Environmental Science & Technology, 2020, 54(14): 9044-9051. |
29 | Palagonia M S, Brogioli D, La Mantia F. Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell[J]. Desalination, 2020, 475: 114192. |
30 | Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J]. ChemInform, 2001, 32(29): 17. |
31 | Delattre B, Amin R, Sander J, et al. Impact of pore tortuosity on electrode kinetics in lithium battery electrodes: study in directionally freeze-cast LiNi0.8Co0.15Al0.05O2(NCA)[J]. Journal of the Electrochemical Society, 2018, 165(2): A388-A395. |
32 | Bin D, Wen Y P, Xia Y Y, et al. The development in aqueous lithium-ion batteries[J]. Journal of Energy Chemistry, 2018, 27: 1521-1535. |
33 | 赵晓昱. 海卤水提锂新技术研究现状及展望[J]. 高校化学工程学报, 2017, 31(3): 497-508. |
Zhao X Y. Review on new techniques for lithium extraction from seawater and brine[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 497-508. | |
34 | Luo J Y, Cui W J, He P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nature Chemistry, 2010, 2(9): 760-765. |
35 | Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
36 | Zhao Z W, Si X F, Liang X X, et al. Electrochemical behavior of Li+, Mg2+, Na+ and K+ in LiFePO4/ FePO4 structures[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1157-1164. |
37 | Zhang W J. Structure and performance of LiFePO4 cathode materials: a review[J]. Journal of Power Sources, 2011, 196(6): 2962-2970. |
38 | Liu C, Li Y B, Lin D C, et al. Lithium extraction from seawater through pulsed electrochemical intercalation[J]. Joule, 2020, 4(7): 1459-1469. |
39 | 纪志永, 孙步云, 袁俊生, 等. 锰基锂离子筛前体及其掺杂和表面修饰进展[J]. 材料导报, 2016, 30(13): 17-22. |
Ji Z Y, Sun B Y, Yuan J S, et al. Doping and surface modification of lithium manganese oxides used as ion-sieve precursor: a review[J]. Materials Review, 2016, 30(13): 17-22. | |
40 | 石西昌, 余亮良, 陈白珍, 等. 锂锰氧化物离子筛结构和掺杂研究进展[J]. 中国锰业, 2009, 27(3): 17-20. |
Shi X C, Yu L L, Chen B Z, et al. Research progress on structure and doping of lithium manganese oxide ion-sieve[J]. China's Manganese Industry, 2009, 27(3): 17-20. | |
41 | Tang W, Zhu Y S, Hou Y Y, et al. Aqueous rechargeable lithium batteries as an energy storage system of superfast charging[J]. Energy & Environmental Science, 2013, 6(7): 2093. |
42 | Fehse M, Trócoli R, Ventosa E, et al. Ultrafast dischargeable LiMn2O4 thin-film electrodes with pseudocapacitive properties for microbatteries[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5295-5301. |
43 | Dong W, Huang X, Jin Y, et al. Building an artificial solid electrolyte interphase on spinel lithium manganate for high performance aqueous lithium-ion batteries[J]. Dalton Transactions, 2020, 49(24): 8136-8142. |
44 | Kanoh H, Ooi K, Miyai Y, et al. Electrochemical recovery of lithium ions in the aqueous phase[J]. Separation Science and Technology, 1993, 28(1/2/3): 643-651. |
45 | Du X, Guan G Q, Li X M, et al. A novel electroactive λ-MnO2/PPy/PSS core–shell nanorod coated electrode for selective recovery of lithium ions at low concentration[J]. Journal of Materials Chemistry A, 2016, 4(36): 13989-13996. |
46 | Zhao X Y, Jiao Y X, Xue P J, et al. Efficient lithium extraction from brine using a three-dimensional nanostructured hybrid inorganic-gel framework electrode[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(12): 4827-4837. |
47 | Xie N, Li Y Q, Lu Y, et al. Electrochemically controlled reversible lithium capture and release enabled by LiMn2O4 nanorods[J]. ChemElectroChem, 2020, 7(1): 105-111. |
48 | Manthiram A, Chemelewski K, Lee E S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(4): 1339. |
49 | Aswathy R, Kesavan T, Kumaran K T, et al. Octahedral high voltage LiNi0.5Mn1.5O4 spinel cathode: enhanced capacity retention of hybrid aqueous capacitors with nitrogen doped graphene[J]. Journal of Materials Chemistry A, 2015, 3(23): 12386-12395. |
50 | Wang F, Suo L M, Liang Y J, et al. Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(8): 1600922. |
51 | Arrebola J C, Caballero Á, Hernán L, et al. Aqueous rechargeable lithium battery based on LiNi0.5Mn1.5O4 spinel with promising performance[J]. Energy & Fuels, 2013, 27(12): 7854-7857. |
52 | Battistel A, Palagonia M S, Brogioli D, et al. Electrochemical methods for lithium recovery: a comprehensive and critical review[J]. Advanced Materials, 2020, 32(23): 1905440. |
53 | Lawagon C P, Nisola G M, Cuevas R A I, et al. Li1-xNi0.5Mn1.5O4/Ag for electrochemical lithium recovery from brine and its optimized performance via response surface methodology[J]. Separation and Purification Technology, 2019, 212: 416-426. |
54 | Muhammad S, Lee S, Kim H, et al. Deciphering the thermal behavior of lithium rich cathode material by in situ X-ray diffraction technique[J]. Journal of Power Sources, 2015, 285: 156-160. |
55 | Zhao Y, Wang Y Y, Lai Q Y, et al. Pseudocapacitance properties of AC/LiNi1/3Co1/3Mn1/3O2 asymmetric supercapacitor in aqueous electrolyte[J]. Synthetic Metals, 2009, 159(3/4): 331-337. |
56 | Wang F X, Xiao S Y, Chang Z, et al. Nanoporous LiNi1/3Co1/3Mn1/3O2 as an ultra-fast charge cathode material for aqueous rechargeable lithium batteries[J]. Chemical Communications, 2013, 49(80): 9209. |
57 | Lawagon C P, Nisola G M, Cuevas R A I, et al. Li1-xNi0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine[J]. Chemical Engineering Journal, 2018, 348: 1000-1011. |
58 | Lee J, Yu S H, Kim C, et al. Highly selective lithium recovery from brine using a λ-MnO2–Ag battery[J]. Physical Chemistry Chemical Physics, 2013, 15(20): 7690. |
59 | Kim S, Lee J, Kang J S, et al. Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system[J]. Chemosphere, 2015, 125: 50-56. |
60 | Missoni L L, Marchini F, del Pozo M, et al. A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine[J]. Journal of the Electrochemical Society, 2016, 163(9): A1898-A1902. |
61 | Zhao A, Liu J C, Ai X P, et al. Highly selective and pollution-free electrochemical extraction of lithium by a polyaniline/LixMn2O4 cell[J]. ChemSusChem, 2019, 12(7): 1361-1367. |
62 | 杨文胜, 于永利, 王淼, 等. 一种从高镁锂比盐水中电化学提取锂盐的方法: 105600807A[P]. 2016-05-25. |
Yang W S, Yu Y L, Wang M, et al. Method for extracting lithium salt from high magnesium-lithium ratio saline water in electrochemical way: 105600807A[P]. 2016-05-25. | |
63 | Trócoli R, Kasiri G, La Mantia F. Phase transformation of copper hexacyanoferrate (KCuFe(CN)6) during zinc insertion: effect of co-ion intercalation[J]. Journal of Power Sources, 2018, 400: 167-171. |
64 | Huggins R A. Review—a new class of high rate, long cycle life, aqueous electrolyte battery electrodes[J]. Journal of the Electrochemical Society, 2017, 164(1): A5031-A5036. |
65 | Wang B Q, Han Y, Wang X, et al. Prussian blue analogs for rechargeable batteries[J]. iScience, 2018, 3: 110-133. |
66 | Erinmwingbovo C, Palagonia M S, Brogioli D, et al. Intercalation into a Prussian blue derivative from solutions containing two species of cations[J]. ChemPhysChem, 2017, 18(8): 917-925. |
67 | Trócoli R, Battistel A, La Mantia F. Nickel hexacyanoferrate as suitable alternative to Ag for electrochemical lithium recovery[J]. ChemSusChem, 2015, 8(15): 2514-2519. |
68 | Trócoli R, Erinmwingbovo C, La Mantia F. Optimized lithium recovery from brines by using an electrochemical ion-pumping process based on λ-MnO2 and nickel hexacyanoferrate[J]. ChemElectroChem, 2017, 4(1): 143-149. |
69 | Kim S, Lee J, Kim S, et al. Electrochemical lithium recovery with a LiMn2O4-zinc battery system using zinc as a negative electrode[J]. Energy Technology, 2018, 6(2): 340-344. |
70 | He L H, Xu W H, Song Y F, et al. New insights into the application of lithium-ion battery materials: selective extraction of lithium from brines via a rocking-chair lithium-ion battery system[J]. Global Challenges, 2018, 2(2): 1700079. |
71 | Zhao M Y, Ji Z Y, Zhang Y G, et al. Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method[J]. Electrochimica Acta, 2017, 252: 350-361. |
72 | Guo Z Y, Ji Z Y, Chen H Y, et al. Effect of impurity ions in the electrosorption lithium extraction process: generation and restriction of “selective concentration polarization”[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11834-11844. |
73 | Kim J S, Lee Y H, Choi S, et al. An electrochemical cell for selective lithium capture from seawater[J]. Environmental Science & Technology, 2015, 49(16): 9415-9422. |
74 | 黄江江, 何利华, 唐忠阳. 类锂电池体系在盐湖提锂中的研究进展[J]. 矿产保护与利用, 2020, 40(5): 1-9. |
Huang J J, He L H, Tang Z Y. Research progress on lithium battery-class system for lithium extraction from brine[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 1-9. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[4] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[5] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[8] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[9] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[10] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[11] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[12] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[13] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[14] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[15] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||