化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5128-5137.DOI: 10.11949/0438-1157.20221125
张立1(), 吴建华1, 崔舒惠1, 严锋1, 孙浩3, 钱飞跃1,2()
收稿日期:
2022-08-08
修回日期:
2022-10-12
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
钱飞跃
作者简介:
张立(1998—),男,硕士研究生,leez048@post.usts.edu.cn
基金资助:
Li ZHANG1(), Jianhua WU1, Shuhui CUI1, Feng YAN1, Hao SUN3, Feiyue QIAN1,2()
Received:
2022-08-08
Revised:
2022-10-12
Online:
2022-11-05
Published:
2022-12-06
Contact:
Feiyue QIAN
摘要:
为解决部分亚硝化-厌氧氨氧化(PN/A)反应存在的硝酸盐残留问题,将PN/A颗粒污泥与固相反硝化(SPD)系统相耦合,用于高氨氮废水的连续处理。在逐级提高颗粒污泥自养脱氮效能的基础上,系统考察了石英砂、聚丁二酸丁二醇酯(PBS)和羟基丁酸戊酸共聚酯(PHBV)三种填料的SPD效能。结果表明,在高水力选择压下,PHBV的反硝化性能最佳,使PN/A-SPD组合工艺的总氮去除率超过了93%,远高于石英砂(83.6%)和PBS(85.8%)的水平。通过高通量测序与功能基因注释可知,固态碳源的溶出水平是影响生物膜菌群多样性的关键因素。其中,在PHBV表面占据主导的水解菌Clostridium-sensu-stricto-7与Comamonadaceae等反硝化菌形成了稳定的协作关系,在有效洗脱自养脱氮功能菌的同时,显著提升了菌群参与多元素循环的功能潜力。上述发现对于系统优化PN/A-SPD组合工艺,推动其工程化应用具有重要的指导意义。
中图分类号:
张立, 吴建华, 崔舒惠, 严锋, 孙浩, 钱飞跃. PN/A颗粒污泥-固相反硝化组合工艺的菌群功能解析[J]. 化工学报, 2022, 73(11): 5128-5137.
Li ZHANG, Jianhua WU, Shuhui CUI, Feng YAN, Hao SUN, Feiyue QIAN. Analysis of bacterial function in combined PN/A granular sludge and solid phase denitrification processes[J]. CIESC Journal, 2022, 73(11): 5128-5137.
运行阶段 | 运行时间 | PN/A段 | SPD段 | ||
---|---|---|---|---|---|
HRT/h | NH | HRT/h | 上升流速/(m·h-1) | ||
Ⅰ | 第1~15 d | 3.5 | 1.40±0.02 | — | — |
Ⅱ | 第16~30 d | 2.5 | 1.95±0.04 | — | — |
Ⅲ | 第31~100 d | 2.0 | 2.44±0.04 | 0.4 | 0.3 |
表1 PN/A-SPD反应器各阶段运行条件
Table 1 Operation conditions of PN/A-SPD reactor during different phases
运行阶段 | 运行时间 | PN/A段 | SPD段 | ||
---|---|---|---|---|---|
HRT/h | NH | HRT/h | 上升流速/(m·h-1) | ||
Ⅰ | 第1~15 d | 3.5 | 1.40±0.02 | — | — |
Ⅱ | 第16~30 d | 2.5 | 1.95±0.04 | — | — |
Ⅲ | 第31~100 d | 2.0 | 2.44±0.04 | 0.4 | 0.3 |
图2 启动期间PN/A颗粒污泥[(a)、(b)]和不同SPD反应器(c)的脱氮性能变化
Fig.2 Changes in denitrification performance of PN/A granular sludge [(a) , (b)] and different SPD reactors (c) during start-up
图3 石英砂[(a)、(b)]、PBS[(c)、(d)]和PHBV[(e)、(f)]挂膜前后表面的扫描电镜图片
Fig.3 SEM images of fresh and microbe attached sand [(a), (b)], PBS [(c), (d)], and PHBV [(e), (f)]
图4 不同微生物样本在OUT水平上的丰富度(a)、多样性指数(b)、PCoA分析结果(c)和Venn图(d)
Fig.4 Richness (a), diversity indexes (b), PCoA results (c) and Venn diagram (d) of different microorganism samples on OTU level
图5 不同样本在门水平的菌群结构组成(a)、相对丰度前40菌属的组成热图(b)和水解菌与反硝化菌的丰度比较(c)
Fig.5 Bacterial community structure on phylum level (a), heatmap of top 40 genera (b), fractions of hydrolyzing and denitrifying bacteria (c) in different microorganism samples
图6 PN/A颗粒污泥(a)、石英砂(b)、PBS(c)和PHBV(d)表面生物膜TOP 50菌属的相关性网络图
Fig.6 Co-occurrence networks of TOP 50 genera in PN/A granular sludge (a), sand (b), PBS (c) and PHBV (d) biofilm
系统 | 节点数 | 边数 | 正相关比例/% | 负相关比例/% | 平均度 |
---|---|---|---|---|---|
PN/A颗粒 | 49 | 385 | 80.3 | 19.5 | 15.714 |
Sand-SPD | 49 | 450 | 62.1 | 37.8 | 18.367 |
PBS-SPD | 50 | 436 | 50.0 | 50.0 | 17.440 |
PHBV-SPD | 47 | 334 | 53.3 | 46.7 | 14.213 |
表2 不同载体上菌群相关性网络的统计分析
Table 2 Statistical results of co-occurrence networks in different bio-carriers
系统 | 节点数 | 边数 | 正相关比例/% | 负相关比例/% | 平均度 |
---|---|---|---|---|---|
PN/A颗粒 | 49 | 385 | 80.3 | 19.5 | 15.714 |
Sand-SPD | 49 | 450 | 62.1 | 37.8 | 18.367 |
PBS-SPD | 50 | 436 | 50.0 | 50.0 | 17.440 |
PHBV-SPD | 47 | 334 | 53.3 | 46.7 | 14.213 |
1 | Kosgey K, Chandran K, Gokal J, et al. Critical analysis of biomass retention strategies in mainstream and sidestream ANAMMOX-mediated nitrogen removal systems[J]. Environmental Science & Technology, 2021, 55(1): 9-24. |
2 | Yan P, Shi H X, Chen Y P, et al. Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110160. |
3 | Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. |
4 | Qian F Y, Gebreyesus A T, Wang J F, et al. Single-stage autotrophic nitrogen removal process at high loading rate: granular reactor performance, kinetics, and microbial characterization[J]. Applied Microbiology and Biotechnology, 2018, 102(5): 2379-2389. |
5 | Cao S B, Du R, Zhou Y. Coupling anammox with heterotrophic denitrification for enhanced nitrogen removal: a review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(19): 2260-2293. |
6 | Zhang Q Q, Zhao Y H, Wang C J, et al. Expression of the nirS, hzsA, and hdh genes and antibiotic resistance genes in response to recovery of anammox process inhibited by oxytetracycline[J]. Science of the Total Environment, 2019, 681: 56-65. |
7 | Bu F, Hu X, Xie L, et al. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal[J]. Journal of Zhejiang University. Science B, 2015, 16(4): 304-316. |
8 | Zhao J M, He Q C, Chen N, et al. Denitrification behavior in a woodchip-packed bioreactor with gradient filling for nitrate-contaminated water treatment[J]. Biochemical Engineering Journal, 2020, 154: 107454. |
9 | Fernández F J, Castro M C, Villasenor J, et al. Agro-food wastewaters as external carbon source to enhance biological phosphorus removal[J]. Chemical Engineering Journal, 2011, 166(2): 559-567. |
10 | Yang L, Guo L K, Ren Y X, et al. Denitrification performance, biofilm formation and microbial diversity during startup of slow sand filter using powdery polycaprolactone as solid carbon source[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105561. |
11 | Park S, Kim H K, Kim D H, et al. The effectiveness of injected carbon sources in enhancing the denitrifying processes in groundwater with high nitrate concentrations[J]. Process Safety and Environmental Protection, 2019, 131: 205-211. |
12 | Wang J L, Chu L B. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. |
13 | Chu L B, Wang J L. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J]. Chemosphere, 2013, 91(9): 1310-1316. |
14 | Li C Y, Wang H Y, Yan G K, et al. Initial carbon release characteristics, mechanisms and denitrification performance of a novel slow release carbon source[J]. Journal of Environmental Sciences, 2022, 118: 32-45. |
15 | Si Z H, Song X S, Wang Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: denitrification efficiency and bacterial community structure[J]. Bioresource Technology, 2018, 267: 416-425. |
16 | Li P, Zuo J E, Wang Y J, et al. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium[J]. Water Research, 2016, 93: 74-83. |
17 | Xu Z S, Dai X H, Chai X L. Biological denitrification using PHBV polymer as solid carbon source and biofilm carrier[J]. Biochemical Engineering Journal, 2019, 146: 186-193. |
18 | Li H, Liu Q S, Dong H B, et al. Porous solid carbon source-supported denitrification in simulated mariculture wastewater[J]. Environmental Technology, 2021, 42(8): 1196-1203. |
19 | Ye L T, Yu G, Zhou S B, et al. Denitrification of nitrate-contaminated groundwater in columns packed with PHBV and ceramsites for application as a permeable reactive barrier[J]. Water Supply, 2017, 17(5): 1241-1248. |
20 | Liu W R, Wang Q, Shen Y L, et al. Enhancing the in situ enrichment of anammox bacteria in aerobic granules to achieve high-rate CANON at low temperatures[J]. Chemosphere, 2021, 278: 130395. |
21 | Qian F Y, Cui S H, Liu F, et al. Effect of hydraulic selection pressure on the characteristics of partial nitritation/anammox granular sludge in a continuous-flow reactor[J]. Environmental Technology & Innovation, 2021, 24: 102042. |
22 | 黄子恒, 张立, 崔舒惠, 等. 冷冻PN/A颗粒污泥快速活化过程中的污泥形态与菌群演化特征分析[J]. 环境科学, 2022, 43(2): 920-927. |
Huang Z H, Zhang L, Cui S H, et al. Characterization of sludge morphology and bacterial community evolution in the rapid activation of freeze-stored PN/A granular sludge[J]. Environmental Science, 2022, 43(2): 920-927. | |
23 | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
The State Environmental Protection Administration. Methods of Analysis for Water and Wastewater Monitoring [M]. 4th ed. Beijing: China Environment Science Press, 2002. | |
24 | Awata T, Oshiki M, Kindaichi T, et al. Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “Candidatus scalindua” group[J]. Applied and Environmental Microbiology, 2013, 79(13): 4145-4148. |
25 | Chen W D, Wen D H. Archaeal and bacterial communities assembly and co-occurrence networks in subtropical mangrove sediments under Spartina alterniflora invasion[J]. Environmental Microbiome, 2021, 16(1): 10. |
26 | Qu Z L, Liu B, Ma Y, et al. Differences in bacterial community structure and potential functions among Eucalyptus plantations with different ages and species of trees[J]. Applied Soil Ecology, 2020, 149: 103515. |
27 | Ibrahim M I, Alsafadi D, Alamry K A, et al. Properties and applications of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites[J]. Journal of Polymers and the Environment, 2021, 29(4): 1010-1030. |
28 | Liu L F, Yu J Y, Cheng L D, et al. Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre[J]. Polymer Degradation and Stability, 2009, 94(1): 90-94. |
29 | Haaijer S C M, Lamers L P M, Smolders A J P, et al. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands[J]. Geomicrobiology Journal, 2007, 24(5): 391-401. |
30 | Pandey C B, Kumar U, Kaviraj M, et al. DNRA: a short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems[J]. Science of the Total Environment, 2020, 738: 139710. |
31 | Zhang Q, Ji F Y, Xu X Y. Effects of physicochemical properties of poly-ε-caprolactone on nitrate removal efficiency during solid-phase denitrification[J]. Chemical Engineering Journal, 2016, 283: 604-613. |
32 | Xiang T, Liang H, Wang P, et al. Insights into two stable mainstream deammonification process and different microbial community dynamics at ambient temperature[J]. Bioresource Technology, 2021, 331: 125058. |
33 | Speth D R, in’t Zandt M H, Guerrero-Cruz S, et al. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system[J]. Nature Communications, 2016, 7: 11172. |
34 | Zhou Q, Sun H M, Jia L X, et al. Simultaneously advanced removal of nitrogen and phosphorus in a biofilter packed with ZVI/PHBV/sawdust composite: deciphering the succession of dominant bacteria and keystone species[J]. Bioresource Technology, 2022, 347: 126724. |
35 | Ma S J, Ma H J, Hu H D, et al. Effect of mixing intensity on hydrolysis and acidification of sewage sludge in two-stage anaerobic digestion: characteristics of dissolved organic matter and the key microorganisms[J]. Water Research, 2019, 148: 359-367. |
36 | Li W W, Khalid H, Zhu Z, et al. Methane production through anaerobic digestion: participation and digestion characteristics of cellulose, hemicellulose and lignin[J]. Applied Energy, 2018, 226: 1219-1228. |
37 | Pérez-Pantoja D, Donoso R, Agulló L, et al. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales[J]. Environmental Microbiology, 2012, 14(5): 1091-1117. |
38 | Li J, Zheng L, Ye C B, et al. Evaluation of an intermittent-aeration constructed wetland for removing residual organics and nutrients from secondary effluent: performance and microbial analysis[J]. Bioresource Technology, 2021, 329: 124897. |
39 | Zhu X Z, Lee L W, Song G Q, et al. Deciphering mono/multivalent draw solute-induced microbial ecology and membrane fouling in anaerobic osmotic membrane bioreactor[J]. Water Research, 2022, 209: 117869. |
40 | Zhang Q, Zhang C, Zhu Y N, et al. Effect of bacteria-to-algae volume ratio on treatment performance and microbial community of a novel heterotrophic nitrification-aerobic denitrification bacteria-chlorella symbiotic system[J]. Bioresource Technology, 2021, 342: 126025. |
41 | Tang J L, Wang X C, Hu Y S, et al. Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment[J]. Bioresource Technology, 2019, 271: 125-135. |
42 | Mao Y P, Xia Y, Zhang T. Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing[J]. Bioresource Technology, 2013, 128: 703-710. |
43 | Gavande P V, Basak A, Sen S, et al. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization[J]. Scientific Reports, 2021, 11: 3032. |
44 | He X, Zhang S Y, Jiang Y H, et al. Influence mechanism of filling ratio on solid-phase denitrification with polycaprolactone as biofilm carrier[J]. Bioresource Technology, 2021, 337: 125401. |
45 | 李桂龙, 李朋发, 吴萌, 等. 化肥配施有机肥对花生根际细菌群落结构及共存网络的影响[J]. 土壤, 2022, 54(3): 498-507. |
Li G L, Li P F, Wu M, et al. Effects of chemical fertilizer combined with organic manure on peanut rhizosphere bacterial community structure and co-occurrence network[J]. Soils, 2022, 54(3): 498-507. | |
46 | Deng Y L, Ruan Y J, Ma B, et al. Multi-omics analysis reveals niche and fitness differences in typical denitrification microbial aggregations[J]. Environment International, 2019, 132: 105085. |
[1] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[2] | 高歆婕, 许载周, 彭永臻, 黄雨薇, 丁静, 安泽铭, 汪传新. 污泥双回流-厌氧/好氧/缺氧强化内源反硝化深度脱氮[J]. 化工学报, 2022, 73(11): 5098-5105. |
[3] | 车林, 金文标, 陈洪一, 迟惠中, 梁云跃. 反硝化微生物菌剂提升A2/O工艺TN去除效果[J]. 化工学报, 2021, 72(S1): 467-474. |
[4] | 巩有奎, 李美玲, 孙洪伟. 不同NO3-浓度An/A/O-SBR系统PAOs-GAOs竞争及N2O释放特性[J]. 化工学报, 2021, 72(3): 1675-1683. |
[5] | 陈唐维, 潘志成, 陈滢, 刘敏, 陈婷婷, 钟亚萍. 旋流器分流比对剩余污泥的释碳性能影响[J]. 化工学报, 2021, 72(11): 5761-5769. |
[6] | 胡智丰,邓时海,张超,李德生,彭帅. 集成式铁基质生物膜反应器自养反硝化深度脱氮[J]. 化工学报, 2020, 71(7): 3304-3312. |
[7] | 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780. |
[8] | 巩有奎, 彭永臻. 运行方式对SBBR亚硝酸型同步脱氮及N2O释放的影响[J]. 化工学报, 2019, 70(6): 2289-2297. |
[9] | 巩有奎, 任丽芳, 彭永臻. 不同DO下SBBR亚硝酸型同步脱氮及N2O释放特性[J]. 化工学报, 2019, 70(4): 1550-1558. |
[10] | 刘小芳, 郭海燕, 张胜男, 黄靓. 聚糖菌反硝化影响因素及内碳源转化特性[J]. 化工学报, 2019, 70(3): 1127-1134. |
[11] | 巩有奎, 赵强, 彭永臻. 不同C/N下SBBR脱氮过程N2O释放及胞外多聚物变化[J]. 化工学报, 2019, 70(12): 4847-4855. |
[12] | 王琦, 赵骥, 但琼鹏, 李夕耀, 张琼, 彭永臻. 反硝化聚磷菌的培养富集及处理生活污水的稳定运行[J]. 化工学报, 2019, 70(12): 4828-4834. |
[13] | 巩有奎, 彭永臻. 曝气强度对SBBR同步生物脱氮及N2O释放影响[J]. 化工学报, 2019, 70(11): 4410-4419. |
[14] | 孙雅雯, 张建华, 彭永臻, 王淑莹. 外加碳源类型对A2/O-BCO系统脱氮除磷性能的影响[J]. 化工学报, 2018, 69(8): 3626-3634. |
[15] | 李晓佳, 王然登, 荣宏伟, 曹勇锋, 李翠翠. 生物除磷颗粒污泥去除Pb2+的效能机制[J]. 化工学报, 2018, 69(4): 1663-1669. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||