1 |
Grolman J M, Zhang D, Smith A M, et al. Rapid 3D extrusion of synthetic tumor microenvironments[J]. Advanced Materials, 2015, 27(37): 5512-5517.
|
2 |
Haines C S, Li N, Spinks G M, et al. New twist on artificial muscles[J]. Proceedings of the National Academy of Sciences, 2016, 113(42): 11709-11716.
|
3 |
Tang M J, Wang W, Li Z L, et al. Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9430-9438.
|
4 |
Yu Y R, Shang L R, Gao W, et al. Microfluidic lithography of bioinspired helical micromotors[J]. Angewandte Chemie-International Edition, 2017, 56(40): 12127-12131.
|
5 |
Xin C, Yang L, Li J W, et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery[J]. Advanced Materials, 2019, 31(25): 1808226.
|
6 |
Mhanna R, Qiu F M, Zhang L, et al. Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery[J]. Small, 2014, 10(10): 1953-1957.
|
7 |
Ma W J, Ling S D, Zhang J W, et al. Microfluidic fabrication of calcium alginate helical microfibers for highly stretchable wound dressing[J]. Journal of Polymer Science, 2022, 60(11): 1741-1749.
|
8 |
Zhao Y Y, Miao X R, Lin J Y, et al. Coiled plant tendril bioinspired fabrication of helical porous microfibers for crude oil cleanup[J]. Global Challenges, 2017, 1(3): 1600021.
|
9 |
Wang J S, Yuan L, Wang L X, et al. Numerical study on helical fiber fragmentation in chiral biological materials[J]. Transactions of Tianjin University, 2018, 24(1): 51-58.
|
10 |
Gao Y, Li B, Wang J S, et al. Fracture toughness analysis of helical fiber-reinforced biocomposites[J]. Journal of the Mechanics and Physics of Solids, 2021, 146: 104206.
|
11 |
Yang W M, Zhu T K, Jin Y A, et al. Facile fabrication of helical microfluidic channel based on rope coiling effect[J]. Microsystem Technologies, 2017, 23(7): 2957-2964.
|
12 |
Cai Q W, Ju X J, Zhang S Y, et al. Controllable fabrication of functional microhelices with droplet microfluidics[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 46241-46250.
|
13 |
Dong Y, Wang L, Wang J, et al. Graphene-based helical micromotors constructed by "microscale liquid rope-coil effect" with microfluidics[J]. ACS Nano, 2020, 14(12): 16600-16613.
|
14 |
Du X Y, Li Q, Wu G, et al. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology[J]. Advanced Materials, 2019, 31(52): 1903733.
|
15 |
马文峻, 陈卓, 凌斯达, 等. 3D打印微流控通道快速可控制备核壳微纤维[J]. 化工学报, 2022, 73(1): 434-440.
|
|
Ma W J, Chen Z, Ling S D, et al. Fast and controllable preparation of core-shell microfibers by 3D printing microfluidic device[J]. CIESC Journal, 2022, 73(1): 434-440.
|
16 |
崔婷婷, 刘吉东, 解安全, 等. 多功能纳米纤维微流体纺丝技术及其应用研究进展[J]. 纺织学报, 2018, 39(12): 158-165.
|
|
Cui T T, Liu J D, Xie A Q, et al. Microfluidic spinning technology for multifunctional nanofibers and application and research progress thereof[J]. Journal of Textile Research, 2018, 39(12): 158-165.
|
17 |
杨慧丽. 微流控制备聚合物螺旋、超螺旋微纤维及螺旋管研究[D]. 苏州: 苏州大学, 2019.
|
|
Yang H L. Studies on the preparation of polymeric helical, superhelical microfibers and helical tubes via microfludic spinning[D]. Suzhou: Soochow University, 2019.
|
18 |
梁哲. 基于微流控技术的生物水凝胶纤维的制备及应用[D]. 北京: 清华大学, 2018.
|
|
Liang Z. Microfluidic fabrication of bioinspired hydrogel microfibers[D]. Beijing: Tsinghua University, 2018.
|
19 |
Yu Y R, Fu F F, Shang L R, et al. Bioinspired helical microfibers from microfluidics[J]. Advanced Materials, 2017, 29(18): 1605765.
|
20 |
雷明月, 颜超, 崔莉, 等. 海藻酸钙纤维非织造布的水凝胶化改性及机理[J]. 化工学报, 2018, 69(4): 1765-1773.
|
|
Lei M Y, Yan C, Cui L, et al. Gelatinization modification of calcium alginate fibers nonwoven fabrics and mechanism research[J]. CIESC Journal, 2018, 69(4): 1765-1773.
|
21 |
郭永诗. 微流控纺丝技术制备非典型螺旋微纤维及其应用[D]. 江门: 五邑大学, 2021.
|
|
Guo Y S. Microfluidic spinning technology-based fabrication of microfibers with atypical helical structure for applications[D]. Jiangmen: Wuyi University, 2021.
|
22 |
谭昕玥, 巨晓洁, 谢锐, 等. 具有油相隔离层的微流控法可控制备中空微纤维[J]. 高分子材料科学与工程, 2022, 38(3): 1-9+17.
|
|
Tan X Y, Ju X J, Xie R, et al. Controllable preparation of hollow microfibers bymicrofluidic with oil phase as isolatoin layer[J]. Polymer Materials Science And Engineering, 2022, 38(3): 1-9+17.
|
23 |
Meng Z J, Wang W, Xie R, et al. Microfluidic generation of hollow Ca-alginate microfibers[J]. Lab on a Chip, 2016, 16(14): 2673-2681.
|
24 |
Blandino A, Macías M, Cantero D. Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics[J]. Journal of Bioscience and Bioengineering, 1999, 88(6): 686-689.
|
25 |
Qin Y M. Gel swelling properties of alginate fibers[J]. Journal of Applied Polymer Science, 2004, 91(3): 1641-1645.
|
26 |
Tottori S, Takeuchi S. Formation of liquid rope coils in a coaxial microfluidic device[J]. RSC Advances, 2015, 5(42): 33691-33695.
|
27 |
杨亚楠, 李峻峰, 王立, 等. 柠檬酸钙:一种有趣的有机钙生物医用材料[J]. 中国组织工程研究, 2021, 25(10): 1609-1615.
|
|
Yang Y N, Li J F, Wang L, et al. Calcium citrate: an interesting organic calcium biomedical material[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(10): 1609-1615.
|
28 |
Nie M, Takeuchi S. Microfluidics based synthesis of coiled hydrogel microfibers with flexible shape and dimension control[J]. Sensors and Actuators B-Chemical, 2017, 246: 358-362.
|
29 |
Liu R, Kong B, Chen Y, et al. Formation of helical alginate microfibers using different G/M ratios of sodium alginate based on microfluidics[J]. Sensors and Actuators B: Chemical, 2020, 304: 127069.
|
30 |
Shao L, Gao Q, Zhao H M, et al. Fiber-based mini tissue with morphology-controllable gelma microfibers[J]. Small, 2018, 14(44): 1802187.
|
31 |
Nunes J K, Constantin H, Stone H A. Microfluidic tailoring of the two-dimensional morphology of crimped microfibers[J]. Soft Matter, 2013, 9(16): 4227-4235.
|
32 |
Ribe N M, Habibi M, Bonn D. Liquid rope coiling[J]. Annual Review of Fluid Mechanics, 2012, 44(1): 249-266.
|
33 |
Yasuda K. Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids[D]. Cambridge: Massachusetts Institute of Technology, 1979.
|
34 |
Tanner R I. A theory of die-swell[J]. Journal of Polymer Science Part A-2: Polymer Physics, 1970, 8(12): 2067-2078.
|
35 |
Cubaud T, Jose B M, Darvishi S. Folded micro-threads: role of viscosity and interfacial tension[J]. Physics of Fluids, 2011, 23(4): 042002.
|
36 |
Ma W J, Liu D, Ling S D, et al. High-throughput and controllable fabrication of helical microfibers by hydrodynamically focusing flow[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59392-59399.
|