化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1083-1092.doi: 10.11949/0438-1157.20211107

• 流体力学与传递现象 • 上一篇    下一篇

蜂窝状水凝胶吸附床传热传质特性数值模拟及验证

钟国栋1(),邓超和1,王洋1,王佳韵1(),王如竹2   

  1. 1.上海理工大学能源与动力工程学院,上海 200082
    2.上海交通大学机械与动力工程学院,上海 201100
  • 收稿日期:2021-08-09 修回日期:2022-01-03 出版日期:2022-03-15 发布日期:2022-03-14
  • 通讯作者: 王佳韵 E-mail:657781445@qq.com;jywang@usst.edu.cn
  • 作者简介:钟国栋(1996—),男,硕士研究生,657781445@qq.com
  • 基金资助:
    国家自然科学基金项目(52006145);上海市青年科技英才扬帆计划项目(20YF1431500);上海市晨光计划项目(19CG54)

Numerical simulation and verification of heat and mass transfer characteristics in honeycomb hydrogel adsorption bed

Guodong ZHONG1(),Chaohe DENG1,Yang WANG1,Jiayun WANG1(),Ruzhu WANG2   

  1. 1.School of Energy and Power Engineering,University of Shanghai for Science and Technology, Shanghai 200082,China
    2.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 201100, China
  • Received:2021-08-09 Revised:2022-01-03 Published:2022-03-15 Online:2022-03-14
  • Contact: Jiayun WANG E-mail:657781445@qq.com;jywang@usst.edu.cn

摘要:

对PAM-LiCl水凝胶复合吸附剂进行了吸附特性实验研究,基于D-A方程拟合其特性曲线,建立了该凝胶蜂窝吸附床的三维数学模型,用COMSOL软件完成了吸附床干燥/湿润工况下的动态吸/脱附过程模拟,结合实验完成该数学模型的验证,最终实现吸附床结构的优化。研究表明,蜂窝结构大幅提升了吸附床的吸/脱附性能。吸附速率与蜂窝传质通道的孔隙度呈正相关;总吸水量先增大后减小,当孔隙度为20%时,总吸水量最大。吸附床的吸附量随吸附床厚度的增大而降低。当空气流速低于3.6 m/s时,提高空气流速能显著增强吸附床的吸附性能。蜂窝吸附床解吸性能良好,在60℃ & RH10%的热空气中可实现完全解吸。

关键词: 吸附, 水凝胶, 传热, 传质, 数值模拟

Abstract:

The adsorption characteristics of PAM-LiCl hydrogel composite adsorbent is studied. Based on the D-A equation, a three-dimensional mathematical model of the honeycomb gel adsorption bed is established. The adsorption/desorption dynamic phase of the adsorption bed under dry/wet conditions air simulated by COMSOL software. Combined with the experiment, the verification of the mathematical model is completed, and finally the optimization of the adsorption bed structure is realized. The results show that the honeycomb structure dramatically improves the adsorption/desorption performance of the adsorption bed. The water uptake rate is positively correlated with the porosity of the honeycomb mass transfer channel. The total water absorption first increases and then decreases. When the porosity is 20%, the total water absorption is the largest. The water uptake of the adsorption bed decreases with the increase of the thickness of the adsorption bed. When the air velocity is lower than 3.6 m/s, increasing the air velocity can significantly enhance the adsorption performance of the adsorption bed. The honeycomb adsorbent bed has good desorption performance and realizes complete desorption in hot air at 60℃.

Key words: adsorption, hydrogel, heat transfer, mass transfer, numerical simulation

中图分类号: 

  • TQ 424

图1

蜂窝状水凝胶吸附床物理模型"

表1

水凝胶吸附剂和空气热物性参数"

材料热导率/(W/(m·K))密度/ (kg/m3)比定压热容/ (kJ/(kg·K))吸附热/(kJ/kg)水分扩散系数/(m2/s)
PAM-LiCl0.41424.6160024001.75×10-10
空气0.02631.2931.0052.82×10-5

图2

吸附实验装置"

图3

PAM-LiCl的吸附特征曲线"

表2

PAM-LiCl的吸附特性曲线的拟合参数"

SectionΔF/(kJ/kg)Correlation curvesR2
35.4-300.5weq=11.3686exp(-0.5519?F0.3180)0.9976
300.5-307.2weq=12.05668-0.03888?F0.98503
307.2-600weq=exp(22.65357-0.8074?F0.95296

图4

PAM-LiCl-CNT在不同温度下的等温吸附动力学"

图5

模型验证"

图6

25℃ &RH75%吸附工况下蜂窝状水凝胶吸附床水分吸附量分布云图"

图7

不同截面处水分吸附量分布云图"

图8

吸附床的平均温度和出口空气温度随时间的变化"

表3

不同孔径对应的孔隙度"

孔径/mm孔体积/mm3吸附剂体积/mm3孔隙度/%
00125000
3.5712501125010
524541004620
6.183750875030
7.145000750040

图9

吸附床结构对性能的影响"

图10

空气流速对吸附性能的影响"

图11

空气温度对吸附床解吸性能的影响"

1 Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2): e1500323.
2 Funk C. We thought trouble was coming[J]. Nature, 2011, 476(7358): 7.
3 Beysens D. Estimating dew yield worldwide from a few meteo data[J]. Atmospheric Research, 2016, 167: 146-155.
4 Pan Z, Pitt W G, Zhang Y M, et al. The upside-down water collection system of Syntrichia caninervis [J]. Nature Plants, 2016, 2: 16076.
5 Bergmair D, Metz S J, de Lange H C, et al. System analysis of membrane facilitated water generation from air humidity[J]. Desalination, 2014, 339: 26-33.
6 Gordeeva L G, Solovyeva M V, Sapienza A, et al. Potable water extraction from the atmosphere: potential of MOFs[J]. Renewable Energy, 2020, 148: 72-80.
7 Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science (New York, N.Y.), 2017, 356(6336): 430-434.
8 Ejeian M, Wang R Z. Adsorption-based atmospheric water harvesting[J]. Joule, 2021, 5(7): 1678-1703.
9 Narayanan S, Li X S, Kim H, et al. Recent advances in adsorption-based heating and cooling systems[J]. Annual Review of Heat Transfer, 2016, 19(1): 199-239.
10 Rieth A J, Wright A M, Skorupskii G, et al. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal–organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(35): 13858-13866.
11 Wang J Y, Wang R Z, Wang L W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents[J]. Applied Thermal Engineering, 2016, 100: 893-901.
12 高娇, 王丽伟, 周志松, 等. 多盐复合吸附剂的非平衡吸附/解吸特性[J]. 化工学报, 2016, 67: 184-190.
Gao J, Wang L W, Zhou Z S, et al. Non-equilibrium sorption/desorption performance of composite multi-salt sorbent[J]. CIESC Journal, 2016, 67: 184-190.
13 刘金亚, 王佳韵, 王丽伟, 等. 一种吸附式空气取水装置的性能实验[J]. 化工学报, 2016, 67: 46-50.
Liu J Y, Wang J Y, Wang L W, et al. Performance test of sorption air-to-water device[J]. CIESC Journal, 2016, 67: 46-50.
14 Narayanan S, Kim H, Umans A, et al. A thermophysical battery for storage-based climate control[J]. Applied Energy, 2017, 189: 31-43.
15 Kim H, Rao S R, Kapustin E A, et al. Adsorption-based atmospheric water harvesting device for arid climates[J]. Nature Communications, 2018, 9: 1191.
16 邓超和, 王佳韵, 李金凤, 等. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
Deng C H, Wang J Y, Li J F, et al. Preparation and adsorption/desorption performance of hydrogel-based composite sorbent driven by low-temperature[J]. CIESC Journal, 2021, 72(8): 4401-4409.
17 Hassan H Z, Mohamad A A, Alyousef Y, et al. A review on the equations of state for the working pairs used in adsorption cooling systems[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 600-609.
18 Poulikakos D, Bejan A. Unsteady natural convection in a porous layer[J]. The Physics of Fluids, 1983, 26(5): 1183-1191.
19 Cho S H, Kim J N. Modeling of a silica gel/water adsorption-cooling system[J]. Energy, 1992, 17(9): 829-839.
20 余楠. 三相吸附储热循环的原理及实验验证[D]. 上海: 上海交通大学, 2015.
Yu N. Principle and experimental verification of a three-phase sorption cycle for thermal energy storage[D]. Shanghai: Shanghai Jiaotong University, 2015.
21 Kim H, Rao S R, LaPotin A, et al. Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120253.
22 Narayanan S, Yang S, Kim H, et al. Optimization of adsorption processes for climate control and thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2014, 77: 288-300.
23 Vivekh P, Bui D T, Kumja M, et al. Theoretical performance analysis of silica gel and composite polymer desiccant coated heat exchangers based on a CFD approach[J]. Energy Conversion and Management, 2019, 187: 423-446.
24 Solmuş İ, Yamalı C, Yıldırım C, et al. Transient behavior of a cylindrical adsorbent bed during the adsorption process[J]. Applied Energy, 2015, 142: 115-124.
25 Sun L M, Ben Amar N, Meunier F. Numerical study on coupled heat and mass transfers in an absorber with external fluid heating[J]. Heat Recovery Systems and CHP, 1995, 15(1): 19-29.
26 Solmuş İ, Rees D A S, Yamalı C, et al. A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair[J]. International Journal of Heat and Mass Transfer, 2012, 55(19/20): 5275-5288.
27 Yaïci W, Entchev E. Coupled unsteady computational fluid dynamics with heat and mass transfer analysis of a solar/heat-powered adsorption cooling system for use in buildings[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118648.
28 Zhao F, Zhou X Y, Liu Y, et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting[J]. Advanced Materials, 2019, 31(10): 1806446.
29 张霞, 荆妙蕾. PAM水凝胶制备及溶胀性能研究[J]. 天津纺织科技, 2017(4): 51-54.
Zhang X, Jing M L. Preparation of porous PAM hydrogel and their swelling properties research[J]. Tianjin Textile Science & Technology, 2017(4): 51-54.
30 Sircar S, Hufton J R. Why does the linear driving force model for adsorption kinetics work? [J]. Adsorption, 2000, 6(2): 137-147.
31 Xie X, Li D Y, Tsai T H, et al. Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends[J]. Macromolecules, 2016, 49(3): 972-978.
32 Laurati M, Sotta P, Long D R, et al. Dynamics of water absorbed in polyamides[J]. Macromolecules, 2012, 45(3): 1676-1687.
[1] 赵庆杰, 胡晓红, 张超, 凡凤仙. 蒸汽在含有不可溶核和可溶无机盐的细颗粒物表面的核化特性[J]. 化工学报, 2022, 73(7): 3251-3261.
[2] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[3] 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231.
[4] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[5] 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884.
[6] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[7] 董彬, 薛永浩, 梁坤峰, 袁争印, 王林, 周训. 相变微胶囊悬浮液喷淋换热特性实验研究[J]. 化工学报, 2022, 73(7): 2971-2981.
[8] 解文潇, 贾胜坤, 张会书, 罗祎青, 袁希钢. 受限空间内浮升气泡与液体间传质行为实验研究[J]. 化工学报, 2022, 73(7): 2902-2911.
[9] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[10] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[11] 许非石, 杨丽霞, 陈光文. 超声微反应器内气液传质过程的介尺度强化机制[J]. 化工学报, 2022, 73(6): 2552-2562.
[12] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[13] 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661.
[14] 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
[15] 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!