1 |
Xie M J, Liu X L, Li H L. Influence of poly(ethylene glycol)-containing additives on extrusion of ultrahigh molecular weight polyethylene/polypropylene blend[J]. Journal of Applied Polymer Science, 2006, 100(2): 1282-1288.
|
2 |
Xie M J, Li H L. Mechanical properties of an ultrahigh-molecular-weight polyethylene/polypropylene blend containing poly(ethylene glycol) additives[J]. Journal of Applied Polymer Science, 2008, 108(5): 3148-3153.
|
3 |
Xie M J, Li H L. Viscosity reduction and disentanglement in ultrahigh molecular weight polyethylene melt: effect of blending with polypropylene and poly(ethylene glycol)[J]. European Polymer Journal, 2007, 43(8): 3480-3487.
|
4 |
Chaudhuri K, Poddar S, Pol H, et al. The effect of processing conditions on the rheological properties of blends of ultra high molecular weight polyethylene with high-density polyethylene[J]. Polymer Engineering & Science, 2019, 59(4): 821-829.
|
5 |
Wood W J, Maguire R G, Zhong W H. Improved wear and mechanical properties of UHMWPE-carbon nanofiber composites through an optimized paraffin-assisted melt-mixing process[J]. Composites Part B: Engineering, 2011, 42(3): 584-591.
|
6 |
González J, Rosales C, González M, et al. Rheological and mechanical properties of blends of LDPE with high contents of UHMWPE wastes[J]. Journal of Applied Polymer Science, 2017, 134(26): 44996.
|
7 |
Lee E M, Oh Y S, Ha H S, et al. Rheological properties of UHMWPE/iPP blends[J]. Polymers for Advanced Technologies, 2009, 20(12): 1121-1126.
|
8 |
Unger T, Klocke L, Herrington K, et al. Investigation of the rheological and mechanical behavior of polypropylene/ultra-high molecular weight polyethylene compounds related to new online process control[J]. Polymer Testing, 2020, 86: 106442.
|
9 |
Huang Y F, Xu J Z, Li J S, et al. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene[J]. Biomaterials, 2014, 35(25): 6687-6697.
|
10 |
Lim K L K, Ishak Z A M, Ishiaku U S, et al. High-density polyethylene/ultra high-molecular-weight polyethylene blend(Ⅰ): The processing, thermal, and mechanical properties[J]. Journal of Applied Polymer Science, 2005, 97(1): 413-425.
|
11 |
卢陈, 王柯. 双辊混炼实现低缠结超高分子量聚乙烯熔融加工及高性能化[J]. 塑料工业, 2020, 48(10): 117-121.
|
|
Lu C, Wang K. Melt processing and performance-enhanced of ultra high molecular weight polyethylene via calendar rolling[J]. China Plastics Industry, 2020, 48(10): 117-121.
|
12 |
梁雄, 伍晓宇, 李兵, 等. 超声粉末模压成型超高分子量聚乙烯微塑件的两相结构[J]. 高分子材料科学与工程, 2014, 30(12): 103-107, 112.
|
|
Liang X, Wu X Y, Li B, et al. Two-phase structure of micro ultrasonic powder molding ultra-high molecular weight polyethylene parts[J]. Polymer Materials Science & Engineering, 2014, 30(12): 103-107, 112.
|
13 |
Rastogi S, Yao Y F, Ronca S, et al. Unprecedented high-modulus high-strength tapes and films of ultrahigh molecular weight polyethylene via solvent-free route[J]. Macromolecules, 2011, 44(14): 5558-5568.
|
14 |
Lewis G. Properties of crosslinked ultra-high-molecular-weight polyethylene[J]. Biomaterials, 2001, 22(4): 371-401.
|
15 |
Qiao X Y, Na M Y, Gao P, et al. The crystallization and rheological behaviors of the ultrahigh molecular weight polyethylene swollen by petrolatum[J]. Polymer Testing, 2019, 80: 106115.
|
16 |
Liu S L, Wang F, Chen J Y, et al. Ultra-high molecular weight polyethylene with reduced fusion defects and improved mechanical properties by liquid paraffin[J]. International Journal of Polymer Analysis and Characterization, 2015, 20(2): 138-149.
|
17 |
Cheung S Y, Wen W J, Gao P. Disentanglement and micropore structure of UHMWPE in an athermal solvent[J]. Polymer Engineering & Science, 2015, 55(5): 1177-1186.
|
18 |
Li Y C, He H, Ma Y B, et al. Rheological and mechanical properties of ultrahigh molecular weight polyethylene/high density polyethylene/polyethylene glycol blends[J]. Advanced Industrial and Engineering Polymer Research, 2019, 2(1): 51-60.
|
19 |
董澎, 王柯, 李军方, 等. 超高分子量聚乙烯烧结制品的链缠结调控及其对性能影响[J]. 高分子学报, 2020, 51(1): 117-124.
|
|
Dong P, Wang K, Li J F, et al. Chain entanglement regulation of sintered ultrahigh molecular weight polyethylene and its effect on properties[J]. Acta Polymerica Sinica, 2020, 51(1): 117-124.
|
20 |
Galetz M C, Blaβ T, Ruckdäschel H, et al. Carbon nanofibre-reinforced ultrahigh molecular weight polyethylene for tribological applications[J]. Journal of Applied Polymer Science, 2007, 104(6): 4173-4181.
|
21 |
张海琛. 基于拉伸流变的UHMWPE熔融挤出过程及其结构与性能研究[D]. 广州: 华南理工大学, 2016.
|
|
Zhang H C. Study on the melt extrusion process of UHMWPE and its morphology and properties under elongational flow[D]. Guangzhou: South China University of Technology, 2016.
|
22 |
刘铮. 不同流场作用下超高分子量聚乙烯分子量变化机制及构效关系研究[D]. 福州: 福建师范大学, 2019.
|
|
Liu Z. Study on molecular weight change mechanism and structure-activity relationship of ultra-high molecular weight polyethylene under different flow fields[D]. Fuzhou: Fujian Normal University, 2019.
|
23 |
何振强. 超高分子量聚乙烯增强改性及加工研究[D]. 北京: 北京化工大学, 2012.
|
|
He Z Q. Reinforced ultra high molecular weight polyethylene and the influnce of processing condtions on its properties[D]. Beijing: Beijing University of Chemical Technology, 2012.
|
24 |
Zhang J B, Cole P J, Nagpal U, et al. Direct correlation between adhesion promotion and coupling reaction at immiscible polymer-polymer interfaces[J]. The Journal of Adhesion, 2006, 82(9): 887-902.
|
25 |
Cole P J, Cook R F, Macosko C W. Adhesion between immiscible polymers correlated with interfacial entanglements[J]. Macromolecules, 2003, 36(8): 2808-2815.
|
26 |
Oslanec R, Brown H R. Entanglement density at the interface between two immiscible polymers[J]. Macromolecules, 2003, 36(15): 5839-5844.
|
27 |
James S P, Lee K R, Beauregard G P, et al. Clinical wear of 63 ultrahigh molecular weight polyethylene acetabular components: effect of starting resin and forming method[J]. Journal of Biomedical Materials Research, 1999, 48(3): 374-384.
|
28 |
Yilmaz G, Ellingham T, Turng L S. Injection and injection compression molding of ultra-high-molecular weight polyethylene powder[J]. Polymer Engineering & Science, 2019, 59(s2): E170-E179.
|
29 |
谢美菊. 超高分子量聚乙烯的加工性能改进和结构与性能的研究[D]. 成都: 四川大学, 2006.
|
|
Xie M J. Studies on processability improvement of ultra high molecular weight polyethylene and influence on its structure and properties[D]. Chengdu: Sichuan University, 2006.
|
30 |
俞欣. 超高分子量聚乙烯结晶行为及其结构性能关系的研究[D]. 上海: 华东理工大学, 2016.
|
|
Yu X. Study on the crystallization and structure-property relationship of ultra high molecular weight polyethylene[D]. Shanghai: East China University of Science and Technology, 2016.
|
31 |
王小俊. 超高分子量聚乙烯的流变行为及其在材料加工中的应用[D]. 广州: 华南理工大学, 2010.
|
|
Wang X J. Rheological behavior of ultra high molecular weight polyethylene and its application in molding processing[D]. Guangzhou: South China University of Technology, 2010.
|
32 |
Truss R W, Han K S, Wallace J F, et al. Cold compaction molding and sintering of ultra high molecular weight polyethylene[J]. Polymer Engineering & Science, 1980, 20(11): 747-755.
|
33 |
Ahmad M, Wahit M U, Kadir M R A, et al. Influence of processing aids and hydroxyapatite as fillers on flow behaviour and mechanical properties of ultra high molecular weight polyethylene/high density polyethylene composites[J]. Key Engineering Materials, 2011, 471/472: 827-832.
|