化工学报 ›› 2022, Vol. 73 ›› Issue (2): 923-932.DOI: 10.11949/0438-1157.20210887
刘轩1(),苏银皎1,滕阳1,张锴1(),王鹏程2,李丽锋2,李圳2
收稿日期:
2021-06-30
修回日期:
2021-10-19
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
张锴
作者简介:
刘轩(1994—),男,博士研究生,基金资助:
Xuan LIU1(),Yinjiao SU1,Yang TENG1,Kai ZHANG1(),Pengcheng WANG2,Lifeng LI2,Zhen LI2
Received:
2021-06-30
Revised:
2021-10-19
Online:
2022-02-05
Published:
2022-02-18
Contact:
Kai ZHANG
摘要:
采用微波消解法和氢化物发生-原子荧光光谱法考察了9台超低排放在役机组硒迁移转化规律,探究了循环流化床(CFB)和煤粉炉(PC)机组飞灰特性差异对硒吸附能力的影响。燃烧后煤中硒几乎全部呈现挥发态,底渣中残留量极低。与浓度归一化和质量分布法相比较,相对富集系数法可以客观地评价燃煤副产物中硒的富集能力,两类机组中硒均主要富集于飞灰中。CFB较低炉膛温度和添加CaO可以降低入炉煤中硒释放比例并增强飞灰对硒的吸附能力,故其底渣和飞灰中硒的富集程度均高于PC,导致脱硫石膏中硒富集程度低于PC。飞灰对硒的吸附量随比表面积或孔容积增大而增大,但随粒径或孔径增大而减小。CFB飞灰中未燃尽碳含量高、形状不规则、表面粗糙且存在较多蜂窝状孔隙,导致其对硒的富集程度高于PC飞灰。
中图分类号:
刘轩, 苏银皎, 滕阳, 张锴, 王鹏程, 李丽锋, 李圳. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932.
Xuan LIU, Yinjiao SU, Yang TENG, Kai ZHANG, Pengcheng WANG, Lifeng LI, Zhen LI. Selenium transformation in ultra-low-emission coal-fired power units and its enrichment characteristics in fly ash[J]. CIESC Journal, 2022, 73(2): 923-932.
机组编号 | 机组容量 | 烟气尾端污染物控制设备 | 取样点 |
---|---|---|---|
CFB1 | 135 MW | SNCR+FF+WFGD | 入炉煤+底渣+飞灰 |
CFB2 | 200 MW | SCR+FF+WFGD | 入炉煤+底渣+飞灰+脱硫石膏 |
CFB3 | 300 MW | SNCR/SCR+FF+WFGD | 入炉煤+底渣+飞灰+脱硫石膏 |
CFB4 | 300 MW | SNCR+FF+WFGD | 入炉煤+底渣+飞灰+脱硫石膏 |
PC1 | 300 MW | SCR+ESP+WFGD | 入炉煤+底渣+飞灰+脱硫石膏 |
PC2 | 330 MW | SCR+ESP+WFGD+WESP | 入炉煤+底渣+飞灰+脱硫石膏 |
PC3 | 350 MW | SCR+ESP+WFGD+WESP | 入炉煤+底渣+飞灰+脱硫石膏 |
PC4 | 600 MW | SCR+ESP+WFGD+WESP | 入炉煤+底渣+飞灰+脱硫石膏 |
PC5 | 600 MW | SNCR/SCR+FF/ESP+WFGD+WESP | 入炉煤+底渣+飞灰+脱硫石膏 |
表1 所选燃煤机组容量、类型及取样类型
Table 1 Unit capacity, boiler type and samples of coal-fired power units in this study
机组编号 | 机组容量 | 烟气尾端污染物控制设备 | 取样点 |
---|---|---|---|
CFB1 | 135 MW | SNCR+FF+WFGD | 入炉煤+底渣+飞灰 |
CFB2 | 200 MW | SCR+FF+WFGD | 入炉煤+底渣+飞灰+脱硫石膏 |
CFB3 | 300 MW | SNCR/SCR+FF+WFGD | 入炉煤+底渣+飞灰+脱硫石膏 |
CFB4 | 300 MW | SNCR+FF+WFGD | 入炉煤+底渣+飞灰+脱硫石膏 |
PC1 | 300 MW | SCR+ESP+WFGD | 入炉煤+底渣+飞灰+脱硫石膏 |
PC2 | 330 MW | SCR+ESP+WFGD+WESP | 入炉煤+底渣+飞灰+脱硫石膏 |
PC3 | 350 MW | SCR+ESP+WFGD+WESP | 入炉煤+底渣+飞灰+脱硫石膏 |
PC4 | 600 MW | SCR+ESP+WFGD+WESP | 入炉煤+底渣+飞灰+脱硫石膏 |
PC5 | 600 MW | SNCR/SCR+FF/ESP+WFGD+WESP | 入炉煤+底渣+飞灰+脱硫石膏 |
燃煤机组 | 入炉煤工业分析/%(质量,空气干燥基) | |||
---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | |
CFB1 | 2.23 | 41.50 | 29.72 | 26.55 |
CFB2 | 1.24 | 61.20 | 18.62 | 18.94 |
CFB3 | 2.36 | 33.96 | 24.94 | 38.74 |
CFB4 | 2.38 | 39.76 | 24.74 | 33.12 |
PC1 | 0.90 | 41.67 | 12.26 | 45.17 |
PC2 | 1.25 | 29.32 | 10.67 | 58.76 |
PC3 | 2.67 | 15.05 | 29.95 | 52.33 |
PC4 | 3.98 | 16.42 | 25.57 | 54.03 |
PC5 | 2.83 | 29.67 | 27.32 | 40.18 |
表2 燃煤机组入炉煤工业分析
Table 2 Proximate analysis of feed coals from coal-fired power units
燃煤机组 | 入炉煤工业分析/%(质量,空气干燥基) | |||
---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | |
CFB1 | 2.23 | 41.50 | 29.72 | 26.55 |
CFB2 | 1.24 | 61.20 | 18.62 | 18.94 |
CFB3 | 2.36 | 33.96 | 24.94 | 38.74 |
CFB4 | 2.38 | 39.76 | 24.74 | 33.12 |
PC1 | 0.90 | 41.67 | 12.26 | 45.17 |
PC2 | 1.25 | 29.32 | 10.67 | 58.76 |
PC3 | 2.67 | 15.05 | 29.95 | 52.33 |
PC4 | 3.98 | 16.42 | 25.57 | 54.03 |
PC5 | 2.83 | 29.67 | 27.32 | 40.18 |
1 | Rayman M P. Selenium and human health[J]. The Lancet, 2012, 379(9822): 1256-1268. |
2 | 张敏明, 袁林喜, 尹雪斌, 等. 人体发硒水平影响因素研究进展[J]. 生物技术进展, 2017, 7(3): 187-192. |
Zhang M M, Yuan L X, Yin X B, et al. Review on influence factors of selenium levels in human hair[J]. Current Biotechnology, 2017, 7(3): 187-192. | |
3 | Song G C, Xu W T, Liu K, et al. Transformation of selenium during coal thermal conversion: effects of atmosphere and inorganic content[J]. Fuel Processing Technology, 2020, 205: 106446. |
4 | 周新越, 吴洋文, 密腾阁, 等. 燃煤烟气重金属与铈改性CaO的相互作用机理研究[J]. 燃料化学学报, 2020, 48(12): 1520-1529. |
Zhou X Y, Wu Y W, Mi T G, et al. Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1520-1529. | |
5 | 苏银皎, 刘轩, 李丽锋, 等. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报, 2019, 70(4): 1559-1566. |
Su Y J, Liu X, Li L F, et al. Distribution characteristics of mercury speciation in coals with three different ranks[J]. CIESC Journal, 2019, 70(4): 1559-1566. | |
6 | 吴舜泽, 孙宁, 卢然, 等. 重金属污染综合防治实施进展与经验分析[J]. 中国环境管理, 2015, 7(1): 21-28. |
Wu S Z, Sun N, Lu R, et al. The progress and empirical analysis on the implementation of comprehensive prevention and control of heavy metal pollution[J]. Chinese Journal of Environmental Management, 2015, 7(1): 21-28. | |
7 | Wang J, Nakazato T, Sakanishi K, et al. Microwave digestion with HNO3/H2O2 mixture at high temperatures for determination of trace elements in coal by ICP-OES and ICP-MS[J]. Analytica Chimica Acta, 2004, 514(1): 115-124. |
8 | Iwashita A, Nakajima T, Takanashi H, et al. Effect of pretreatment conditions on the determination of major and trace elements in coal fly ash using ICP-AES[J]. Fuel, 2006, 85(2): 257-263. |
9 | Gómez-Ariza J L, Sánchez-Rodas D, Giráldez I, et al. A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples[J]. Talanta, 2000, 51(2): 257-268. |
10 | 施正伦, 骆仲泱, 周劲松, 等. 石煤流化床燃烧重金属排放特性试验研究[J]. 煤炭学报, 2001, 26(2): 209-212. |
Shi Z L, Luo Z Y, Zhou J S, et al. Experimental research on heavy metals emission from fluidized bed with stone coal fired[J]. Journal of China Coal Society, 2001, 26(2): 209-212. | |
11 | Zheng C H, Wang L, Zhang Y X, et al. Partitioning of hazardous trace elements among air pollution control devices in ultra-low-emission coal-fired power plants[J]. Energy & Fuels, 2017, 31(6): 6334-6344. |
12 | 赵志锋, 杜谦, 董鹤鸣, 等[J]. 湿法脱硫装置对燃煤锅炉PM2.5排放特征的影响[J]. 化工学报, 2017, 68(11): 4261-4271. |
Zhao Z F, Du Q, Dong H M, et al. Influence of wet flue gas desulfurization devices on PM2.5 emission characteristics of coal-fired boilers[J]. CIESC Journal, 2017, 68(11): 4261-4271. | |
13 | 徐文东, 曾荣树, 叶大年, 等. 电厂煤燃烧后元素硒的分布及对环境的贡献[J]. 环境科学, 2005, 26(2): 64-68. |
Xu W D, Zeng R S, Ye D N, et al. Distributions and environmental impacts of selenium in wastes of coal from a power plant[J]. Environmental Science, 2005, 26(2): 64-68. | |
14 | López-Antón M A, Díaz-Somoano M, Spears D A, et al. Arsenic and selenium capture by fly ashes at low temperature[J]. Environmental Science & Technology, 2006, 40(12): 3947-3951. |
15 | Fu B, Liu G J, Sun M, et al. Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler[J]. Environmental Pollution, 2018, 242: 1950-1960. |
16 | 陈冠益, 王钦, 颜蓓蓓. 煤中痕量元素在循环流化床锅炉中的迁移行为与富集特性[J]. 燃料化学学报, 2013, 41(9): 1050-1055. |
Chen G Y, Wang Q, Yan B B. Mobility and enrichment of trace elements in a coal-fired circulating fluidized bed boiler[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1050-1055. | |
17 | Seames W S, Wendt J O L. Regimes of association of arsenic and selenium during pulverized coal combustion[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2839-2846. |
18 | 王珲, 宋蔷, 姚强, 等. ICP-OES/ICP-MS测定煤中多种元素的微波消解方法研究[J]. 光谱学与光谱分析, 2012, 32(6): 1662-1665. |
Wang H, Song Q, Yao Q, et al. Study on microwave digestion of coal for the determination of multi-element by ICP-OES and ICP-MS[J]. Spectroscopy and Spectral Analysis, 2012, 32(6): 1662-1665. | |
19 | 张锴, 刘轩, 苏银皎, 等. 一种测定燃煤电厂煤及其燃烧副产物中砷、硒、铅的方法: 110487758B[P]. 2021-05-14. |
Zhang K, Liu X, Su Y J, et al. Method for determining arsenic, selenium and lead in coal-fired power plant coals and combustion byproducts thereof: 110487758B[P]. 2021-05-14. | |
20 | Contreras M L, García-Frutos F J, Bahillo A. Oxy-fuel combustion effects on trace metals behaviour by equilibrium calculations[J]. Fuel, 2013, 108: 474-483. |
21 | 韩军, 梁洋硕, 赵波, 等. 混煤燃烧过程中砷/硒与飞灰中矿物质之间的高温原位反应[J]. 燃料化学学报, 2020, 48(11): 1356-1364. |
Han J, Liang Y S, Zhao B, et al. In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1356-1364. | |
22 | Querol X, Fernández-Turiel J L, López -Soler A. Trace elements in coal and their behaviour during combustion in a large power station[J]. Fuel, 1995, 74(3): 331-343. |
23 | Ma T T, Huang Y D, Deng S, et al. The relationship between selenium retention and fine particles removal during coal combustion[J]. Fuel, 2020, 265: 116859. |
24 | Shen F H, Liu J, Zhang Z, et al. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed[J]. Journal of Hazardous Materials, 2016, 310: 40-47. |
25 | 邢佳颖, 王春波, 张月, 等. Se和SeO2在O2/CaO(001)表面吸附反应的第一性原理研究[J]. 燃料化学学报, 2019, 47(8): 993-999. |
Xing J Y, Wang C B, Zhang Y, et al. First-principles study of the adsorption and reaction of Se and SeO2 on O2/CaO(001) surface[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 993-999. | |
26 | Liu Z, Han J, Zhao L, et al. Effects of Se and SeO2 on the denitrification performance of V2O5-WO3/TiO2 SCR catalyst[J]. Applied Catalysis A: General, 2019, 587: 117263. |
27 | Shin Y, Lee D W, Choi K Y, et al. VSb(SeO3)4, first selenite containing V3+ cation: synthesis, structure, characterization, magnetic properties, and calculations[J]. Inorganic Chemistry, 2013, 52(24): 14224-14230. |
28 | Wang L, Zheng C H, Zhang Y X, et al. Speciation characteristics and mobility of trace elements across ultralow emission air pollution control devices[J]. Energy & Fuels, 2017, 31(12): 13963-13971. |
29 | 刘福国. 煤粉炉燃烧效率工程预测模型[J]. 动力工程, 2004, 24(5): 636-639. |
Liu F G. Engineering forecasting model of combustion efficiency for pulverized fired boiler[J]. Journal of Chinese Society of Power Engineering, 2004, 24(5): 636-639. | |
30 | 刘建忠, 张光学, 周俊虎, 等. 燃煤细灰的形成及微观形态特征[J]. 化工学报, 2006, 57(12): 2976-2980. |
Liu J Z, Zhang G X, Zhou J H, et al. Formation and micromorphology characteristics of fine particles generated during coal combustion[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(12): 2976-2980. | |
31 | 徐飞, 骆仲泱, 王鹏, 等. 不同工况和粒径下飞灰孔隙结构的实验研究[J]. 动力工程, 2007, 27(4): 620-624. |
Xu F, Luo Z Y, Wang P, et al. Experimental study on the porous structure of variously sized fly ash particles under different combustion conditions[J]. Journal of Chinese society of Power Engineering, 2007, 27(4): 620-624. | |
32 | Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances(I): Computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380. |
33 | Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[7] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[8] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[11] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[12] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[13] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[14] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[15] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||