化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3120-3130.DOI: 10.11949/0438-1157.20220096
收稿日期:
2022-01-16
修回日期:
2022-04-14
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
王建林
作者简介:
周新杰(1995—),男,博士研究生,基金资助:
Xinjie ZHOU(),Jianlin WANG(),Xingcong AI,Enguang SUI,Rutong WANG
Received:
2022-01-16
Revised:
2022-04-14
Online:
2022-07-05
Published:
2022-08-01
Contact:
Jianlin WANG
摘要:
间歇过程具有多模态特性,现有的间歇过程模态划分方法中过程数据高维特征和模态中心的选取直接影响模态划分结果的合理性,进而影响间歇过程质量变量在线预测的精度。为提高间歇过程质量变量在线预测的精度,提出了一种基于改进密度峰值聚类相关向量机(improved density peaks clustering-relevance vector machine,IDPC-RVM)的间歇过程质量变量在线预测方法。首先,在密度峰值聚类算法基础上,考虑过程数据的高维特征进行样本相似性度量,并通过样本密度不平衡下的模态中心选取策略准确获取间歇过程模态中心;其次,利用模态划分指标在无须先验知识的情况下获取间歇过程最优模态数目,并识别过渡模态完成间歇过程的模态划分;最后,建立各模态数据的RVM预测模型,实现间歇过程质量变量的在线预测。青霉素发酵过程的实验结果表明,与RVM、SCFCM-RVM和DPC-RVM方法相比,对青霉素浓度预测的均方根误差(RMSE)降低至0.0093,判定系数(R2)提升至0.9995,有效地提高了预测精度。
中图分类号:
周新杰, 王建林, 艾兴聪, 随恩光, 王汝童. 基于IDPC-RVM的多模态间歇过程质量变量在线预测[J]. 化工学报, 2022, 73(7): 3120-3130.
Xinjie ZHOU, Jianlin WANG, Xingcong AI, Enguang SUI, Rutong WANG. IDPC-RVM based online prediction of quality variables for multimode batch processes[J]. CIESC Journal, 2022, 73(7): 3120-3130.
过程变量 | 单位 | 过程变量 | 单位 |
---|---|---|---|
通风率 | L/h | 二氧化碳浓度 | mmol/L |
搅拌功率 | W | pH | |
底物流加速率 | L/h | 反应器温度 | K |
底物流温度 | K | 产热量 | kcal/h |
底物浓度 | g/L | 加酸流速 | ml/h |
溶解氧浓度 | mol/L | 加碱流速 | ml/h |
生物质浓度 | g/L | 加冷却水流速 | L/h |
青霉素浓度 | g/L | 加热水流速 | L/h |
反应器体积 | L |
表1 青霉素发酵过程变量
Table 1 Variables of penicillin fermentation process
过程变量 | 单位 | 过程变量 | 单位 |
---|---|---|---|
通风率 | L/h | 二氧化碳浓度 | mmol/L |
搅拌功率 | W | pH | |
底物流加速率 | L/h | 反应器温度 | K |
底物流温度 | K | 产热量 | kcal/h |
底物浓度 | g/L | 加酸流速 | ml/h |
溶解氧浓度 | mol/L | 加碱流速 | ml/h |
生物质浓度 | g/L | 加冷却水流速 | L/h |
青霉素浓度 | g/L | 加热水流速 | L/h |
反应器体积 | L |
方法 | SM #1 | TM #1 | SM #2 | TM #2 | SM #3 | TM #3 | SM #4 |
---|---|---|---|---|---|---|---|
SCFCM | 1~38 | 39~48 | 49~93 | 94~110 | 111~146 | 147~226 | 227~400 |
DPC | 1~40 | — | 41~283 | — | 284~343 | — | 344~400 |
IDPC | 1~28 | 29~49 | 50~98 | 99~117 | 118~177 | 178~199 | 200~400 |
表2 不同方法的最终模态划分结果
Table 2 Final mode partitioning results of different methods
方法 | SM #1 | TM #1 | SM #2 | TM #2 | SM #3 | TM #3 | SM #4 |
---|---|---|---|---|---|---|---|
SCFCM | 1~38 | 39~48 | 49~93 | 94~110 | 111~146 | 147~226 | 227~400 |
DPC | 1~40 | — | 41~283 | — | 284~343 | — | 344~400 |
IDPC | 1~28 | 29~49 | 50~98 | 99~117 | 118~177 | 178~199 | 200~400 |
方法 | 平均RMSE | 平均R2 |
---|---|---|
RVM | 0.0592 | 0.9815 |
SCFCM-RVM | 0.0167 | 0.9986 |
DPC-RVM | 0.0382 | 0.9924 |
IDPC-RVM | 0.0093 | 0.9995 |
表3 不同方法下的平均RMSE和平均R2
Table 3 Mean RMSE and mean R2 of different methods
方法 | 平均RMSE | 平均R2 |
---|---|---|
RVM | 0.0592 | 0.9815 |
SCFCM-RVM | 0.0167 | 0.9986 |
DPC-RVM | 0.0382 | 0.9924 |
IDPC-RVM | 0.0093 | 0.9995 |
1 | Chang P, Lu R W. Process monitoring of batch process based on overcomplete broad learning network[J]. Engineering Applications of Artificial Intelligence, 2021, 99: 104139. |
2 | Chu F, Wang J C, Zhao X, et al. Transfer learning for nonlinear batch process operation optimization[J]. Journal of Process Control, 2021, 101: 11-23. |
3 | Chu F, Cheng X, Jia R D, et al. Final quality prediction method for new batch processes based on improved JYKPLS process transfer model[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 183: 1-10. |
4 | Yamaguchi T, Yamashita Y. Quality prediction for multi-grade batch process using sparse flexible clustered multi-task learning[J]. Computers & Chemical Engineering, 2021, 150: 107320. |
5 | Zhu J L, Gao F R. Improved nonlinear quality estimation for multiphase batch processes based on relevance vector machine with neighborhood component variable selection[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 666-676. |
6 | Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244. |
7 | Qiu K P, Wang J L, Wang R T, et al. Soft sensor development based on kernel dynamic time warping and a relevant vector machine for unequal-length batch processes[J]. Expert Systems with Applications, 2021, 182: 115223. |
8 | Zhao H T. Order-information-based phase partition and fault detection for batch processes[J]. Industrial & Engineering Chemistry Research, 2018, 57(23): 7905-7921. |
9 | Guo J Y, Yuan T M, Li Y. Fault detection of multimode process based on local neighbor normalized matrix[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 154: 162-175. |
10 | Zhu J L, Wang Y Q, Zhou D H, et al. Batch process modeling and monitoring with local outlier factor[J]. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1552-1565. |
11 | Chang P, Qiao J F, Lu R W, et al. Multiphase batch process monitoring based on higher-order cumulant analysis[J]. The Canadian Journal of Chemical Engineering, 2020, 98(2): 513-524. |
12 | Wang J L, Qiu K P, Liu W M, et al. Unsupervised-multiscale-sequential-partitioning and multiple-SVDD-model-based process-monitoring method for multiphase batch processes[J]. Industrial & Engineering Chemistry Research, 2018, 57(51): 17437-17451. |
13 | Dong W W, Yao Y, Gao F R. Phase analysis and identification method for multiphase batch processes with partitioning multi-way principal component analysis (MPCA) model[J]. Chinese Journal of Chemical Engineering, 2012, 20(6): 1121-1127. |
14 | Ye X F, Wang P L, Yang Z Y. Time sequential phase partition and modeling method for fault detection of batch processes[J]. IEEE Access, 2017, 6: 1249-1260. |
15 | Zhao C H, Sun Y X. Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 125: 109-120. |
16 | Li W Q, Zhao C H, Gao F R. Sequential time slice alignment based unequal-length phase identification and modeling for fault detection of irregular batches[J]. Industrial & Engineering Chemistry Research, 2015, 54(41): 10020-10030. |
17 | Yu W K, Zhao C H, Zhang S M. A two-step parallel phase partition algorithm for monitoring multiphase batch processes with limited batches[J]. IFAC-PapersOnLine, 2017, 50(1): 2750-2755. |
18 | Liu J X, Liu T, Zhang J. Window-based stepwise sequential phase partition for nonlinear batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9229-9243. |
19 | Zhao C H, Gao F R. Statistical modeling and online fault detection for multiphase batch processes with analysis of between-phase relative changes[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 58-67. |
20 | Lu N Y, Gao F R, Wang F L. Sub-PCA modeling and on-line monitoring strategy for batch processes[J]. AIChE Journal, 2004, 50(1): 255-259. |
21 | 张雷, 张小刚, 陈华. 基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量[J]. 化工学报, 2018, 69(6): 2576-2585. |
Zhang L, Zhang X G, Chen H. Soft sensors for multi-stage batch processes based on Gath-Geva algorithm and kernel extreme learning machine[J]. CIESC Journal, 2018, 69(6): 2576-2585. | |
22 | Luo L J, Bao S Y, Mao J F, et al. Phase partition and phase-based process monitoring methods for multiphase batch processes with uneven durations[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2035-2048. |
23 | Luo L J, Bao S Y, Mao J F, et al. Fuzzy phase partition and hybrid modeling based quality prediction and process monitoring methods for multiphase batch processes[J]. Industrial & Engineering Chemistry Research, 2016, 55(14): 4045-4058. |
24 | Luo L J. Monitoring uneven multistage/multiphase batch processes using trajectory-based fuzzy phase partition and hybrid MPCA models[J]. The Canadian Journal of Chemical Engineering, 2019, 97(1): 178-187. |
25 | 刘伟旻, 王建林, 邱科鹏, 等. 基于DHSC的多模态间歇过程测量数据异常检测方法[J]. 化工学报, 2017, 68(11): 4201-4207. |
Liu W M, Wang J L, Qiu K P, et al. Method for detecting abnormal data in multimode batch processes based on dynamic hypersphere structure change[J]. CIESC Journal, 2017, 68(11): 4201-4207. | |
26 | Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. |
27 | Flores K G, Garza S E. Density peaks clustering with gap-based automatic center detection[J]. Knowledge-Based Systems, 2020, 206: 106350. |
28 | Xu M L, Li Y H, Li R X, et al. EADP: an extended adaptive density peaks clustering for overlapping community detection in social networks[J]. Neurocomputing, 2019, 337: 287-302. |
29 | Guo R X, Zhang N, Wang J Q, et al. Phase partition and identification based on a two-step method for batch process[J]. Transactions of the Institute of Measurement and Control, 2018, 40(16): 4472-4483. |
30 | 邵昌昇, 楼巍, 严利民. 高维数据中的相似性度量算法的改进[J]. 计算机技术与发展, 2011, 21(2): 1-4. |
Shao C S, Lou W, Yan L M. Optimization of algorithm of similarity measurement in high-dimensional data[J]. Computer Technology and Development, 2011, 21(2): 1-4. | |
31 | Birol G, Ündey C, Çinar A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[5] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[6] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[7] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[8] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[9] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[10] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[11] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[12] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[13] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[14] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[15] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||