1 |
陈忠圣, 朱梅玉, 贺彦林, 等. 基于分位数回归CGAN的虚拟样本生成方法及其过程建模应用[J]. 化工学报, 2021, 72(3): 1529-1538.
|
|
Chen Z S, Zhu M Y, He Y L, et al. Quantile regression CGAN based virtual samples generation and its applications to process modeling[J]. CIESC Journal, 2021, 72(3): 1529-1538.
|
2 |
李海波, 柴天佑, 岳恒. 浮选工艺指标KPCA-ELM软测量模型及应用[J]. 化工学报, 2012, 63(9): 2892-2898.
|
|
Li H B, Chai T Y, Yue H. Soft sensor of technical indices based on KPCA-ELM and application for flotation process[J]. CIESC Journal, 2012, 63(9): 2892-2898.
|
3 |
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4): 795-814.
|
4 |
Yuan X F, Huang B, Wang Y L, et al. Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3235-3243.
|
5 |
Ge Z Q, Song Z H, Ding S X, et al. Data mining and analytics in the process industry: the role of machine learning[J]. IEEE Access, 2017, 5: 20590-20616.
|
6 |
Massy W F. Principal components regression in exploratory statistical research[J]. Journal of the American Statistical Association, 1965, 60(309): 234-256.
|
7 |
Ma M, Khatibisepehr S, Huang B. A Bayesian framework for real-time identification of locally weighted partial least squares[J]. AIChE Journal, 2015, 61(2): 518-529.
|
8 |
Fortuna L, Giannone P, Graziani S, et al. Virtual instruments based on stacked neural networks to improve product quality monitoring in a refinery[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(1): 95-101.
|
9 |
Kaneko H, Funatsu K. Application of online support vector regression for soft sensors[J]. AIChE Journal, 2014, 60(2): 600-612.
|
10 |
Ku W F, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196.
|
11 |
Dong Y N, Qin S J. Regression on dynamic PLS structures for supervised learning of dynamic data[J]. Journal of Process Control, 2018, 68: 64-72.
|
12 |
Chen J, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models[J]. Chemical Engineering Science, 2002, 57(1): 63-75.
|
13 |
Ge Z Q, Chen X R. Dynamic probabilistic latent variable model for process data modeling and regression application[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 323-331.
|
14 |
Everett B. An Introduction to Latent Variable Models[M]. Berlin:Springer Science & Business Media, 2013.
|
15 |
Dong Y N, Qin S J. Dynamic latent variable analytics for process operations and control[J]. Computers & Chemical Engineering, 2018, 114: 69-80.
|
16 |
Zhou L, Li G, Song Z H, et al. Autoregressive dynamic latent variable models for process monitoring[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 366-373.
|
17 |
Zhou L, Zheng J Q, Ge Z Q, et al. Multimode process monitoring based on switching autoregressive dynamic latent variable model[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8184-8194.
|
18 |
Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
|
19 |
Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space[J]. Journal of Machine Learning Research, 2001, 2: 97-123.
|
20 |
Kingma D P, Welling M. Auto-encoding variational Bayes[J/OL]. [2022-03-07]..
|
21 |
McCoy J T, Kroon S, Auret L. Variational autoencoders for missing data imputation with application to a simulated milling circuit[J]. IFAC-PapersOnLine, 2018, 51(21): 141-146.
|
22 |
Xie R M, Jan N M, Hao K R, et al. Supervised variational autoencoders for soft sensor modeling with missing data[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2820-2828.
|
23 |
Odiowei P P, Cao Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 36-45.
|
24 |
Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176.
|
25 |
Yuan X F, Li L, Shardt Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4404-4414.
|
26 |
Yao L, Jiang X Y, Huang G P, et al. Virtual sensing f-CaO content of cement clinker based on incremental deep dynamic features extracting and transferring model[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10.
|
27 |
Huang Y, Chen C H, Huang C J. Motor fault detection and feature extraction using RNN-based variational autoencoder[J]. IEEE Access, 2019, 7: 139086-139096.
|
28 |
Geng Z Q, Chen Z W, Meng Q C, et al. Novel transformer based on gated convolutional neural network for dynamic soft sensor modeling of industrial processes[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1521-1529.
|
29 |
Lee Y S, Ooi S K, Tanny D, et al. Developing soft-sensor models using latent dynamic variational autoencoders[J]. IFAC-PapersOnLine, 2021, 54(3): 61-66.
|
30 |
Yao L, Ge Z Q. Dynamic features incorporated locally weighted deep learning model for soft sensor development[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11.
|
31 |
Shen B B, Ge Z Q. Supervised nonlinear dynamic system for soft sensor application aided by variational auto-encoder[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6132-6142.
|
32 |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]//Advances in Neural Information Processing Systems 30 (NIPS 2017. LongBeach, CA, USA, 2017: 5998-6008.
|
33 |
Zhang M X, Yang Y, Ji Y L, et al. Recurrent attention network using spatial-temporal relations for action recognition[J]. Signal Processing, 2018, 145: 137-145.
|