化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3156-3165.DOI: 10.11949/0438-1157.20220349
收稿日期:
2022-03-07
修回日期:
2022-04-05
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
侯北平
作者简介:
周乐(1987—),男,博士,副教授,基金资助:
Le ZHOU1(),Chengkai SHEN1,Chao WU1,Beiping HOU1(
),Zhihuan SONG2
Received:
2022-03-07
Revised:
2022-04-05
Online:
2022-07-05
Published:
2022-08-01
Contact:
Beiping HOU
摘要:
复杂化工过程的观测数据往往同时包含非线性和强动态特性,而传统的化工过程软测量方法无法准确提取观测数据的非线性动态特征,以至影响数据建模和质量预报的准确性。提出了一种基于变分自编码器的深度融合特征提取网络(deep fusion features extraction network, DFFEN)。在变分自编码器框架下,通过构建潜隐特征信息传递通道,提取非线性动态潜隐变量。并利用自注意力机制(self-attention)融合关键的隐层信息,优化因信息传递通道过长而导致的潜在特征被遗忘的问题。此外,在后端网络构建潜隐变量和关键质量变量之间的回归模型,以实现关键质量变量的预报。最后,通过数值案例和实际的合成氨过程验证了所提出的DFFEN模型的可行性和有效性。
中图分类号:
周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing[J]. CIESC Journal, 2022, 73(7): 3156-3165.
Models | RMSE | |
---|---|---|
PPCR | 0.8944 | 2.0062 |
SSAE | 0.9187 | 1.7601 |
SNDS | 0.9233 | 1.7098 |
DFFEN | ||
T=2 | 0.9202 | 1.7472 |
T=3 | 0.9343 | 1.5838 |
T=4 | 0.9364 | 1.5573 |
T=5 | 0.9282 | 1.6561 |
表1 数值案例不同模型预测结果
Table 1 Prediction results for different models using numerical case
Models | RMSE | |
---|---|---|
PPCR | 0.8944 | 2.0062 |
SSAE | 0.9187 | 1.7601 |
SNDS | 0.9233 | 1.7098 |
DFFEN | ||
T=2 | 0.9202 | 1.7472 |
T=3 | 0.9343 | 1.5838 |
T=4 | 0.9364 | 1.5573 |
T=5 | 0.9282 | 1.6561 |
编号 | 变量描述 |
---|---|
FR03001 | 流入03B001的燃气流量 |
FR03002 | 流入03B001的外置燃气流量 |
PC03002 | 03E005出口处燃气外置燃料压力 |
PC03007 | 03B001炉膛出口烟气压力 |
TI03001 | 03E005出口处的燃料放气温度 |
TI03009 | 03B002E06出口燃气的温度 |
TR03012 | 03B001入口处的加工气体温度 |
TI03013 | 03B001左上角炉膛烟气温度 |
TI03014 | 03B001右上角炉膛烟气温度 |
TR03015 | 03B001炉顶混炉烟气温度 |
TR03016 | 03B001左出口的转化气体温度 |
TR03017 | 03B001右出口的转化气体温度 |
TR03020 | 03B001出口转化气体的温度 |
AR03001 | 炉顶氧浓度 |
表2 一段转化炉变量描述
Table 2 The description of the variables in primary reformer
编号 | 变量描述 |
---|---|
FR03001 | 流入03B001的燃气流量 |
FR03002 | 流入03B001的外置燃气流量 |
PC03002 | 03E005出口处燃气外置燃料压力 |
PC03007 | 03B001炉膛出口烟气压力 |
TI03001 | 03E005出口处的燃料放气温度 |
TI03009 | 03B002E06出口燃气的温度 |
TR03012 | 03B001入口处的加工气体温度 |
TI03013 | 03B001左上角炉膛烟气温度 |
TI03014 | 03B001右上角炉膛烟气温度 |
TR03015 | 03B001炉顶混炉烟气温度 |
TR03016 | 03B001左出口的转化气体温度 |
TR03017 | 03B001右出口的转化气体温度 |
TR03020 | 03B001出口转化气体的温度 |
AR03001 | 炉顶氧浓度 |
Models | RMSE | |
---|---|---|
PPCR | -0.3291 | 1.1737 |
SSAE | 0.5389 | 0.6913 |
SNDS | 0.1121 | 0.8833 |
DFFEN | 0.6946 | 0.5181 |
表3 各模型在合成氨过程的预测结果
Table 3 Prediction results for different models in the synthetic ammonia process
Models | RMSE | |
---|---|---|
PPCR | -0.3291 | 1.1737 |
SSAE | 0.5389 | 0.6913 |
SNDS | 0.1121 | 0.8833 |
DFFEN | 0.6946 | 0.5181 |
1 | 陈忠圣, 朱梅玉, 贺彦林, 等. 基于分位数回归CGAN的虚拟样本生成方法及其过程建模应用[J]. 化工学报, 2021, 72(3): 1529-1538. |
Chen Z S, Zhu M Y, He Y L, et al. Quantile regression CGAN based virtual samples generation and its applications to process modeling[J]. CIESC Journal, 2021, 72(3): 1529-1538. | |
2 | 李海波, 柴天佑, 岳恒. 浮选工艺指标KPCA-ELM软测量模型及应用[J]. 化工学报, 2012, 63(9): 2892-2898. |
Li H B, Chai T Y, Yue H. Soft sensor of technical indices based on KPCA-ELM and application for flotation process[J]. CIESC Journal, 2012, 63(9): 2892-2898. | |
3 | Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4): 795-814. |
4 | Yuan X F, Huang B, Wang Y L, et al. Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3235-3243. |
5 | Ge Z Q, Song Z H, Ding S X, et al. Data mining and analytics in the process industry: the role of machine learning[J]. IEEE Access, 2017, 5: 20590-20616. |
6 | Massy W F. Principal components regression in exploratory statistical research[J]. Journal of the American Statistical Association, 1965, 60(309): 234-256. |
7 | Ma M, Khatibisepehr S, Huang B. A Bayesian framework for real-time identification of locally weighted partial least squares[J]. AIChE Journal, 2015, 61(2): 518-529. |
8 | Fortuna L, Giannone P, Graziani S, et al. Virtual instruments based on stacked neural networks to improve product quality monitoring in a refinery[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(1): 95-101. |
9 | Kaneko H, Funatsu K. Application of online support vector regression for soft sensors[J]. AIChE Journal, 2014, 60(2): 600-612. |
10 | Ku W F, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196. |
11 | Dong Y N, Qin S J. Regression on dynamic PLS structures for supervised learning of dynamic data[J]. Journal of Process Control, 2018, 68: 64-72. |
12 | Chen J, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models[J]. Chemical Engineering Science, 2002, 57(1): 63-75. |
13 | Ge Z Q, Chen X R. Dynamic probabilistic latent variable model for process data modeling and regression application[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 323-331. |
14 | Everett B. An Introduction to Latent Variable Models[M]. Berlin:Springer Science & Business Media, 2013. |
15 | Dong Y N, Qin S J. Dynamic latent variable analytics for process operations and control[J]. Computers & Chemical Engineering, 2018, 114: 69-80. |
16 | Zhou L, Li G, Song Z H, et al. Autoregressive dynamic latent variable models for process monitoring[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 366-373. |
17 | Zhou L, Zheng J Q, Ge Z Q, et al. Multimode process monitoring based on switching autoregressive dynamic latent variable model[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8184-8194. |
18 | Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319. |
19 | Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space[J]. Journal of Machine Learning Research, 2001, 2: 97-123. |
20 | Kingma D P, Welling M. Auto-encoding variational Bayes[J/OL]. [2022-03-07].. |
21 | McCoy J T, Kroon S, Auret L. Variational autoencoders for missing data imputation with application to a simulated milling circuit[J]. IFAC-PapersOnLine, 2018, 51(21): 141-146. |
22 | Xie R M, Jan N M, Hao K R, et al. Supervised variational autoencoders for soft sensor modeling with missing data[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2820-2828. |
23 | Odiowei P P, Cao Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 36-45. |
24 | Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176. |
25 | Yuan X F, Li L, Shardt Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4404-4414. |
26 | Yao L, Jiang X Y, Huang G P, et al. Virtual sensing f-CaO content of cement clinker based on incremental deep dynamic features extracting and transferring model[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10. |
27 | Huang Y, Chen C H, Huang C J. Motor fault detection and feature extraction using RNN-based variational autoencoder[J]. IEEE Access, 2019, 7: 139086-139096. |
28 | Geng Z Q, Chen Z W, Meng Q C, et al. Novel transformer based on gated convolutional neural network for dynamic soft sensor modeling of industrial processes[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1521-1529. |
29 | Lee Y S, Ooi S K, Tanny D, et al. Developing soft-sensor models using latent dynamic variational autoencoders[J]. IFAC-PapersOnLine, 2021, 54(3): 61-66. |
30 | Yao L, Ge Z Q. Dynamic features incorporated locally weighted deep learning model for soft sensor development[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. |
31 | Shen B B, Ge Z Q. Supervised nonlinear dynamic system for soft sensor application aided by variational auto-encoder[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6132-6142. |
32 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]//Advances in Neural Information Processing Systems 30 (NIPS 2017. LongBeach, CA, USA, 2017: 5998-6008. |
33 | Zhang M X, Yang Y, Ji Y L, et al. Recurrent attention network using spatial-temporal relations for action recognition[J]. Signal Processing, 2018, 145: 137-145. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[3] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[4] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[5] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[6] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[7] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[8] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[9] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[10] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[11] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[12] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[13] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
[14] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[15] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 190
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 425
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||