化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3417-3432.DOI: 10.11949/0438-1157.20220266
收稿日期:
2022-03-01
修回日期:
2022-05-10
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
贺高红
作者简介:
王佳铭(1998—),男,博士研究生,jiamingwang@mail.dlut.edu.cn
基金资助:
Jiaming WANG(), Xuehua RUAN, Gaohong HE()
Received:
2022-03-01
Revised:
2022-05-10
Online:
2022-08-05
Published:
2022-09-06
Contact:
Gaohong HE
摘要:
膜法二氧化碳分离具有无相变、低能耗等优势,在碳捕集和气体净化等领域具有极大的潜力。膜分离是一种基于组分渗透速率差异的分离过程,其中,气体组分的物化性质差异是实现分离的前提,而膜材料有效识别组分的差异则是高效分离的关键。烟道气、天然气、合成气是最典型的三种二氧化碳分离体系,组成以及操作条件都存在显著的不同。膜材料的设计,既要充分利用组分的性质差异,进行功能基团和聚集结构的针对性设计,实现高分离性能,又要充分考虑操作条件的特殊性,保证良好的分离效率、耐受性和操作稳定性。以二氧化碳分离膜的渗透传质机理为基础,结合不同体系的组成差异和操作条件差异,综述近年来二氧化碳分离膜材料的研究进展,并对未来的研究方向以及瓶颈问题进行展望。
中图分类号:
王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432.
Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures[J]. CIESC Journal, 2022, 73(8): 3417-3432.
气体分子 | 临界温度 /℃ | 动力学直径 /nm |
---|---|---|
CO2 | 31 | 0.330 |
N2 | -147 | 0.364 |
表1 二氧化碳与氮气的分子性质
Table 1 Molecular properties of carbon dioxide and nitrogen
气体分子 | 临界温度 /℃ | 动力学直径 /nm |
---|---|---|
CO2 | 31 | 0.330 |
N2 | -147 | 0.364 |
膜 | 测试条件 | 原料气组成 | CO2渗透系数 /Barrer | CO2/N2选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|
COF@XLPEO | 35℃/0.5 MPa | 纯气 | 803.9 | 61.4 | 2022 | [ |
ZIF-8@PVI-POEM① | 30℃/0.1 MPa | 纯气 | 4474.0 | 32.0 | 2022 | [ |
PHZ-2/Pebax | 25℃/0.1 MPa | 纯气 | 172.4 | 87.9 | 2021 | [ |
PPPS/PDMS/PSf① | 25℃/0.5 MPa | CO2/N2(15∶85) | 1050.0 | 64.0 | 2021 | [ |
PDMS/TMC-PPPS/PDMS/PSf① | 25℃/0.5 MPa | CO2/N2(15∶85) | 785.0 | 78.0 | 2021 | [ |
PIM-1-IL3 | 25℃/0.69 MPa | 纯气 | 817.0 | 35.5 | 2020 | [ |
CuTCPP/PSf① | RT/0.15 MPa | 纯气 | 4245.0 | 33.0 | 2022 | [ |
CuBDC-ns@MoS2@Pebax | 35℃/0.4 MPa | 纯气 | 123.0 | 69.0 | 2022 | [ |
GEFSIX-2-Cu-i @Pebax/PEGDME | 35℃/0.4 MPa | 纯气 | 460.0 | 57.0 | 2022 | [ |
CS+PEG-modified PVTMS | 30℃/0.1 MPa | 纯气 | 156.0 | 33.0 | 2022 | [ |
NaY@SPEEK | 25℃/0.1 MPa | 纯气 | 765.0 | 63.0 | 2021 | [ |
BN-SMILM | —/0.1 MPa | 纯气 | 277.0 | 90.0 | 2021 | [ |
TCM(CN)-475-3(h) | 30℃/0.3 MPa | CO2/N2(50∶50) | 1295.0 | 35.8 | 2021 | [ |
TCM(CN)-475-3(h) | 30℃/0.3 MPa | 纯气 | 1196.0 | 30.9 | 2021 | [ |
IL@MOF-801/PIM-1 | 35℃/0.4 MPa | 纯气 | 9420.0 | 29.0 | 2021 | [ |
cPIM-1/PPNs | 25℃/0.2 MPa | 纯气 | 11511.0 | 24.3 | 2021 | [ |
PI-NP@PDMS | 35℃/0.2 MPa | 纯气 | 6639.0 | 9.1 | 2021 | [ |
TiO2@6FDA-BNTA | 30℃/0.2 MPa | 纯气 | 376.2 | 24.3 | 2021 | [ |
Cu-BTC-SC/Pebax① | 25℃/0.15 MPa | CO2/N2(15∶85) | 1102.5 | 54.8 | 2021 | [ |
UIO-66@HNT/Pebax | 25℃/0.5 MPa | 纯气 | 119.1 | 76.3 | 2021 | [ |
UiO-TFxx/PEGDA | 35℃/0.1 MPa | 纯气 | 470.0 | 41.0 | 2021 | [ |
Aniline/Pebax | RT/0.7 MPa | 纯气 | 151.0 | 92.5 | 2021 | [ |
PEG/NaY@Pebax | 30℃/0.15 MPa | 纯气 | 172.6 | 107.9 | 2021 | [ |
PAN-γ-CD-MOF-PU | 35℃/0.1 MPa | 纯气 | 71.0 | 253.5 | 2021 | [ |
POEM-g-PAcAm | 35℃/0.1 MPa | 纯气 | 261.7 | 44.0 | 2021 | [ |
UiO-66-NH2@IL/PIM-1 | 20℃/0.1 MPa | 纯气 | 8383.4 | 22.5 | 2021 | [ |
UiO-66-NB@PEG/PPG-PDMS | 30℃/0.1 MPa | 纯气 | 585.0 | 53.0 | 2020 | [ |
PI-TSIL-0.8 | 30℃/0.1 MPa | 纯气 | 10.2 | 92.8 | 2021 | [ |
PEG/PPG-PDMS | 30℃/0.2 MPa | 纯气 | 514.5 | 50.9 | 2020 | [ |
MEEP95/PPOP-PPZ | 40℃/0.1 MPa | 纯气 | 610.0 | 35.0 | 2020 | [ |
表2 近年来部分CO2/N2分离膜性能汇总
Table 2 Summary of CO2/N2 separation membrane performance in recent years
膜 | 测试条件 | 原料气组成 | CO2渗透系数 /Barrer | CO2/N2选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|
COF@XLPEO | 35℃/0.5 MPa | 纯气 | 803.9 | 61.4 | 2022 | [ |
ZIF-8@PVI-POEM① | 30℃/0.1 MPa | 纯气 | 4474.0 | 32.0 | 2022 | [ |
PHZ-2/Pebax | 25℃/0.1 MPa | 纯气 | 172.4 | 87.9 | 2021 | [ |
PPPS/PDMS/PSf① | 25℃/0.5 MPa | CO2/N2(15∶85) | 1050.0 | 64.0 | 2021 | [ |
PDMS/TMC-PPPS/PDMS/PSf① | 25℃/0.5 MPa | CO2/N2(15∶85) | 785.0 | 78.0 | 2021 | [ |
PIM-1-IL3 | 25℃/0.69 MPa | 纯气 | 817.0 | 35.5 | 2020 | [ |
CuTCPP/PSf① | RT/0.15 MPa | 纯气 | 4245.0 | 33.0 | 2022 | [ |
CuBDC-ns@MoS2@Pebax | 35℃/0.4 MPa | 纯气 | 123.0 | 69.0 | 2022 | [ |
GEFSIX-2-Cu-i @Pebax/PEGDME | 35℃/0.4 MPa | 纯气 | 460.0 | 57.0 | 2022 | [ |
CS+PEG-modified PVTMS | 30℃/0.1 MPa | 纯气 | 156.0 | 33.0 | 2022 | [ |
NaY@SPEEK | 25℃/0.1 MPa | 纯气 | 765.0 | 63.0 | 2021 | [ |
BN-SMILM | —/0.1 MPa | 纯气 | 277.0 | 90.0 | 2021 | [ |
TCM(CN)-475-3(h) | 30℃/0.3 MPa | CO2/N2(50∶50) | 1295.0 | 35.8 | 2021 | [ |
TCM(CN)-475-3(h) | 30℃/0.3 MPa | 纯气 | 1196.0 | 30.9 | 2021 | [ |
IL@MOF-801/PIM-1 | 35℃/0.4 MPa | 纯气 | 9420.0 | 29.0 | 2021 | [ |
cPIM-1/PPNs | 25℃/0.2 MPa | 纯气 | 11511.0 | 24.3 | 2021 | [ |
PI-NP@PDMS | 35℃/0.2 MPa | 纯气 | 6639.0 | 9.1 | 2021 | [ |
TiO2@6FDA-BNTA | 30℃/0.2 MPa | 纯气 | 376.2 | 24.3 | 2021 | [ |
Cu-BTC-SC/Pebax① | 25℃/0.15 MPa | CO2/N2(15∶85) | 1102.5 | 54.8 | 2021 | [ |
UIO-66@HNT/Pebax | 25℃/0.5 MPa | 纯气 | 119.1 | 76.3 | 2021 | [ |
UiO-TFxx/PEGDA | 35℃/0.1 MPa | 纯气 | 470.0 | 41.0 | 2021 | [ |
Aniline/Pebax | RT/0.7 MPa | 纯气 | 151.0 | 92.5 | 2021 | [ |
PEG/NaY@Pebax | 30℃/0.15 MPa | 纯气 | 172.6 | 107.9 | 2021 | [ |
PAN-γ-CD-MOF-PU | 35℃/0.1 MPa | 纯气 | 71.0 | 253.5 | 2021 | [ |
POEM-g-PAcAm | 35℃/0.1 MPa | 纯气 | 261.7 | 44.0 | 2021 | [ |
UiO-66-NH2@IL/PIM-1 | 20℃/0.1 MPa | 纯气 | 8383.4 | 22.5 | 2021 | [ |
UiO-66-NB@PEG/PPG-PDMS | 30℃/0.1 MPa | 纯气 | 585.0 | 53.0 | 2020 | [ |
PI-TSIL-0.8 | 30℃/0.1 MPa | 纯气 | 10.2 | 92.8 | 2021 | [ |
PEG/PPG-PDMS | 30℃/0.2 MPa | 纯气 | 514.5 | 50.9 | 2020 | [ |
MEEP95/PPOP-PPZ | 40℃/0.1 MPa | 纯气 | 610.0 | 35.0 | 2020 | [ |
气体分子 | 临界温度/℃ | 动力学直径 /nm |
---|---|---|
CO2 | 31 | 0.330 |
CH4 | -82 | 0.380 |
表3 二氧化碳与甲烷的分子性质
Table 3 Molecular properties of carbon dioxide and methane
气体分子 | 临界温度/℃ | 动力学直径 /nm |
---|---|---|
CO2 | 31 | 0.330 |
CH4 | -82 | 0.380 |
膜 | 测试条件 | 原料气组成 | CO2渗透系数 /Barrer | CO2/CH4选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|
COF@XLPEO | 35℃/0.5 MPa | 纯气 | 803.9 | 19.8 | 2022 | [ |
ZIF-8@PVI-POEM① | 35℃/0.1 MPa | 纯气 | 4474.0 | 12.4 | 2022 | [ |
CuTCPP/PSf① | RT/0.1 MPa | 纯气 | 4245.0 | 30.0 | 2022 | [ |
CuBDC-ns@10MoS2@Pebax | 35℃/0.4 MPa | 纯气 | 123.0 | 18.0 | 2022 | [ |
GEFSIX-2-Cu-I ns @Pebax/PEGDME | 35℃/0.4 MPa | 纯气 | 460.0 | 18.0 | 2022 | [ |
CS+PEG-modified PVTMS | 30℃/0.1 MPa | 纯气 | 153.0 | 23.0 | 2022 | [ |
6FDA:BPDA-TSN:TCDB | 35℃/0.689 MPa | 纯气 | 45.7 | 35.2 | 2022 | [ |
IPI | 35℃/2 MPa | CO2/CH4(50∶50) | 27.0 | 47.0 | 2022 | [ |
PI/HCPs-NH2 | 35℃/0.1 MPa | 纯气 | 77.6 | 17.9 | 2022 | [ |
VZIF-67/6FDA-Durene | 35℃/0.2 MPa | CO2/CH4(50∶50) | 1210.0 | 32.5 | 2021 | [ |
PTA-OH-CMS | 35℃/0.2 MPa | 纯气 | 2470.0 | 75.0 | 2022 | [ |
PTA-OH-CMS | 35℃/0.4 MPa | CO2/CH4(50∶50) | 1360.0 | 74.0 | 2022 | [ |
PI-IL/UiO-66-NH2 | 34℃/0.049 MPa | CO2/CH4(50∶50) | 7.6 | 95.1 | 2022 | [ |
Pebax/LMO-2.0 | 25℃/0.1 Mpa | 纯气 | 117.9 | 18.7 | 2022 | [ |
Pebax/LMO-2.0 | 25℃/0.2 MPa | CO2/CH4(10∶90) | 158.5 | 33.4 | 2022 | [ |
TR(BHAPPP-6FDA) | 30℃/0.01 MPa | 纯气 | 258.5 | 120.2 | 2022 | [ |
PES/pNA-MWCNTs① | RT/0.5 MPa | 纯气 | 12.9 | 42.1 | 2021 | [ |
ZIF-8@PSf | 25℃/0.5 MPa | 纯气 | 33.6 | 39.0 | 2022 | [ |
ZIF-8@PSf | 25℃/0.5 MPa | CO2/CH4(50∶50) | 20.1 | 10.6 | 2022 | [ |
Pebax/Bio-ZIF-12 | 25℃/0.2 MPa | CO2/CH4(20∶80) | 542.0 | 40.0 | 2021 | [ |
CTA-TNT@CNT | 25℃/0.1 MPa | 纯气 | 19.8 | 43.0 | 2021 | [ |
Pebax/ns-MFI | 25℃/0.2 MPa | CO2/CH4(50∶50) | 159.1 | 27.4 | 2021 | [ |
TB/ZIF-8@PDA | 35℃/0.4 MPa | 纯气 | 277.3 | 15.5 | 2021 | [ |
Crosslinked BMPI | 25℃/0.69 MPa | 纯气 | 483.6 | 26.0 | 2021 | [ |
MIL-160/CAU-10-F① | 22℃/0.12 MPa | CO2/CH4(50∶50) | 716.0 | 78.0 | 2021 | [ |
CeO2@GO/CTA | 25℃/0.15 MPa | 纯气 | 10.1 | 50.7 | 2021 | [ |
APDS-SAPO-34/Pebax | 25℃/0.2 MPa | CO2/CH4(50∶50) | 137.0 | 34.7 | 2021 | [ |
表4 近年来部分CO2/CH4分离膜性能汇总
Table 4 Summary of CO2/CH4 membrane separation performance in recent years
膜 | 测试条件 | 原料气组成 | CO2渗透系数 /Barrer | CO2/CH4选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|
COF@XLPEO | 35℃/0.5 MPa | 纯气 | 803.9 | 19.8 | 2022 | [ |
ZIF-8@PVI-POEM① | 35℃/0.1 MPa | 纯气 | 4474.0 | 12.4 | 2022 | [ |
CuTCPP/PSf① | RT/0.1 MPa | 纯气 | 4245.0 | 30.0 | 2022 | [ |
CuBDC-ns@10MoS2@Pebax | 35℃/0.4 MPa | 纯气 | 123.0 | 18.0 | 2022 | [ |
GEFSIX-2-Cu-I ns @Pebax/PEGDME | 35℃/0.4 MPa | 纯气 | 460.0 | 18.0 | 2022 | [ |
CS+PEG-modified PVTMS | 30℃/0.1 MPa | 纯气 | 153.0 | 23.0 | 2022 | [ |
6FDA:BPDA-TSN:TCDB | 35℃/0.689 MPa | 纯气 | 45.7 | 35.2 | 2022 | [ |
IPI | 35℃/2 MPa | CO2/CH4(50∶50) | 27.0 | 47.0 | 2022 | [ |
PI/HCPs-NH2 | 35℃/0.1 MPa | 纯气 | 77.6 | 17.9 | 2022 | [ |
VZIF-67/6FDA-Durene | 35℃/0.2 MPa | CO2/CH4(50∶50) | 1210.0 | 32.5 | 2021 | [ |
PTA-OH-CMS | 35℃/0.2 MPa | 纯气 | 2470.0 | 75.0 | 2022 | [ |
PTA-OH-CMS | 35℃/0.4 MPa | CO2/CH4(50∶50) | 1360.0 | 74.0 | 2022 | [ |
PI-IL/UiO-66-NH2 | 34℃/0.049 MPa | CO2/CH4(50∶50) | 7.6 | 95.1 | 2022 | [ |
Pebax/LMO-2.0 | 25℃/0.1 Mpa | 纯气 | 117.9 | 18.7 | 2022 | [ |
Pebax/LMO-2.0 | 25℃/0.2 MPa | CO2/CH4(10∶90) | 158.5 | 33.4 | 2022 | [ |
TR(BHAPPP-6FDA) | 30℃/0.01 MPa | 纯气 | 258.5 | 120.2 | 2022 | [ |
PES/pNA-MWCNTs① | RT/0.5 MPa | 纯气 | 12.9 | 42.1 | 2021 | [ |
ZIF-8@PSf | 25℃/0.5 MPa | 纯气 | 33.6 | 39.0 | 2022 | [ |
ZIF-8@PSf | 25℃/0.5 MPa | CO2/CH4(50∶50) | 20.1 | 10.6 | 2022 | [ |
Pebax/Bio-ZIF-12 | 25℃/0.2 MPa | CO2/CH4(20∶80) | 542.0 | 40.0 | 2021 | [ |
CTA-TNT@CNT | 25℃/0.1 MPa | 纯气 | 19.8 | 43.0 | 2021 | [ |
Pebax/ns-MFI | 25℃/0.2 MPa | CO2/CH4(50∶50) | 159.1 | 27.4 | 2021 | [ |
TB/ZIF-8@PDA | 35℃/0.4 MPa | 纯气 | 277.3 | 15.5 | 2021 | [ |
Crosslinked BMPI | 25℃/0.69 MPa | 纯气 | 483.6 | 26.0 | 2021 | [ |
MIL-160/CAU-10-F① | 22℃/0.12 MPa | CO2/CH4(50∶50) | 716.0 | 78.0 | 2021 | [ |
CeO2@GO/CTA | 25℃/0.15 MPa | 纯气 | 10.1 | 50.7 | 2021 | [ |
APDS-SAPO-34/Pebax | 25℃/0.2 MPa | CO2/CH4(50∶50) | 137.0 | 34.7 | 2021 | [ |
气体分子 | 临界温度 /℃ | 动力学直径 /nm |
---|---|---|
CO2 | 31 | 0.330 |
H2 | -240 | 0.289 |
表5 二氧化碳与氢气的分子性质
Table 5 Molecular properties of carbon dioxide and hydrogen
气体分子 | 临界温度 /℃ | 动力学直径 /nm |
---|---|---|
CO2 | 31 | 0.330 |
H2 | -240 | 0.289 |
膜 | 测试条件 | 原料气组成 | CO2渗透系数 /Barrer | CO2/H2选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|
COF@XLPEO | 35℃/0.5 MPa | 纯气 | 803.9 | 15.0 | 2022 | [ |
GO-[BMIM][BF4]-SILM | 50℃/— | 纯气 | 71.9 | 23.7 | 2018 | [ |
GEFSIX-2-Cu-i @Pebax/PEGDME | 35℃/0.4 MPa | 纯气 | 460.0 | 17.0 | 2022 | [ |
IL/SAPO 34-NH2@Pebax/PEGMDE | RT/0.1 MPa | 纯气 | 408.9 | 22.1 | 2017 | [ |
CA/PSf | 25℃/0.25 MPa | 纯气 | 80.5 | 1.8 | 2022 | [ |
ZIF-8-CNT-PDMS | — | 纯气 | 8705.0 | 23.9 | 2021 | [ |
TpPa-2 SSSN① | 25℃/— | CO2/H2(50∶50) | 328.0 | 22.0 | 2021 | [ |
PVA/Pebax/PSf | 25℃/0.6 MPa | 纯气 | 20.0 | 7.6 | 2021 | [ |
LDH/FAS-PDMS | 23℃/0.03 MPa | CO2/H2/N2/CH4等摩尔混合 | 7748.0 | 43.0 | 2021 | [ |
UiO-66-NH2-PVP-PEI | RT/0.1 MPa | CO2/H2(50∶50) | 394.0 | 12.0 | 2021 | [ |
AF-MWNT@PVA-POS | 107℃/0.2 MPa | 纯气 | 3196.0 | 205.0 | 2020 | [ |
AF-MWNT@PVA-POS | 107℃/1.5 MPa | 纯气 | 776.0 | 31.0 | 2020 | [ |
PIL FSI-40 IL FSI | 35℃/0.1 MPa | 纯气 | 201.0 | 8.9 | 2020 | [ |
PDMS-GO | 20℃/0.2 MPa | 纯气 | 3670.0 | 11.7 | 2020 | [ |
Pebax① | 25℃/0.4 MPa | 纯气 | 986.9 | 4.1 | 2020 | [ |
Pebax① | 25℃/0.4 MPa | CO2/H2(30∶70) | 610.5 | 3.2 | 2020 | [ |
Mxene@Pebax① | 25℃/0.4 MPa | 纯气 | 1986.5 | 6.1 | 2020 | [ |
Mxene@Pebax① | 25℃/0.4 MPa | CO2/H2(30∶70) | 1360.0 | 5.4 | 2020 | [ |
Brush type poly(PEGMA)/PSf | 35℃/0.3 MPa | 纯气 | 85.5 | 13.4 | 2019 | [ |
GO-SILM① | —/0.16 MPa | 纯气 | 260.0 | 43.0 | 2019 | [ |
MoS2-[BMIM][BF4] under positive EEF | 25℃/0.1 MPa | 纯气 | 243.0 | 34.0 | 2019 | [ |
PIL C(CN)3-60[C2mim][C(CN)3] | 20℃/0.1 MPa | 纯气 | 438.0 | 15.1 | 2018 | [ |
ZIF-8@PEGDA-co-PEGMEA | 35℃/— | 纯气 | 560.0 | 11.0 | 2018 | [ |
CS/SF/GNP① | 90℃/0.2 MPa | 纯气 | 126.0 | 52.0 | 2018 | [ |
PDMS/PAN① | 22℃/0.2 MPa | 纯气 | 2250.0 | 3.4 | 2018 | [ |
MoS2 SILM | 25℃/0.6 MPa | 纯气 | 92.9 | 14.95 | 2017 | [ |
[BIMIM][TfO] | 40℃/0.2 MPa | 纯气 | 1966.0 | 16.5 | 2016 | [ |
表6 近年来部分CO2/H2分离膜性能汇总
Table 6 Summary of CO2/H2 membrane separation performance in recent years
膜 | 测试条件 | 原料气组成 | CO2渗透系数 /Barrer | CO2/H2选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|
COF@XLPEO | 35℃/0.5 MPa | 纯气 | 803.9 | 15.0 | 2022 | [ |
GO-[BMIM][BF4]-SILM | 50℃/— | 纯气 | 71.9 | 23.7 | 2018 | [ |
GEFSIX-2-Cu-i @Pebax/PEGDME | 35℃/0.4 MPa | 纯气 | 460.0 | 17.0 | 2022 | [ |
IL/SAPO 34-NH2@Pebax/PEGMDE | RT/0.1 MPa | 纯气 | 408.9 | 22.1 | 2017 | [ |
CA/PSf | 25℃/0.25 MPa | 纯气 | 80.5 | 1.8 | 2022 | [ |
ZIF-8-CNT-PDMS | — | 纯气 | 8705.0 | 23.9 | 2021 | [ |
TpPa-2 SSSN① | 25℃/— | CO2/H2(50∶50) | 328.0 | 22.0 | 2021 | [ |
PVA/Pebax/PSf | 25℃/0.6 MPa | 纯气 | 20.0 | 7.6 | 2021 | [ |
LDH/FAS-PDMS | 23℃/0.03 MPa | CO2/H2/N2/CH4等摩尔混合 | 7748.0 | 43.0 | 2021 | [ |
UiO-66-NH2-PVP-PEI | RT/0.1 MPa | CO2/H2(50∶50) | 394.0 | 12.0 | 2021 | [ |
AF-MWNT@PVA-POS | 107℃/0.2 MPa | 纯气 | 3196.0 | 205.0 | 2020 | [ |
AF-MWNT@PVA-POS | 107℃/1.5 MPa | 纯气 | 776.0 | 31.0 | 2020 | [ |
PIL FSI-40 IL FSI | 35℃/0.1 MPa | 纯气 | 201.0 | 8.9 | 2020 | [ |
PDMS-GO | 20℃/0.2 MPa | 纯气 | 3670.0 | 11.7 | 2020 | [ |
Pebax① | 25℃/0.4 MPa | 纯气 | 986.9 | 4.1 | 2020 | [ |
Pebax① | 25℃/0.4 MPa | CO2/H2(30∶70) | 610.5 | 3.2 | 2020 | [ |
Mxene@Pebax① | 25℃/0.4 MPa | 纯气 | 1986.5 | 6.1 | 2020 | [ |
Mxene@Pebax① | 25℃/0.4 MPa | CO2/H2(30∶70) | 1360.0 | 5.4 | 2020 | [ |
Brush type poly(PEGMA)/PSf | 35℃/0.3 MPa | 纯气 | 85.5 | 13.4 | 2019 | [ |
GO-SILM① | —/0.16 MPa | 纯气 | 260.0 | 43.0 | 2019 | [ |
MoS2-[BMIM][BF4] under positive EEF | 25℃/0.1 MPa | 纯气 | 243.0 | 34.0 | 2019 | [ |
PIL C(CN)3-60[C2mim][C(CN)3] | 20℃/0.1 MPa | 纯气 | 438.0 | 15.1 | 2018 | [ |
ZIF-8@PEGDA-co-PEGMEA | 35℃/— | 纯气 | 560.0 | 11.0 | 2018 | [ |
CS/SF/GNP① | 90℃/0.2 MPa | 纯气 | 126.0 | 52.0 | 2018 | [ |
PDMS/PAN① | 22℃/0.2 MPa | 纯气 | 2250.0 | 3.4 | 2018 | [ |
MoS2 SILM | 25℃/0.6 MPa | 纯气 | 92.9 | 14.95 | 2017 | [ |
[BIMIM][TfO] | 40℃/0.2 MPa | 纯气 | 1966.0 | 16.5 | 2016 | [ |
膜 | 测试条件 | 原料气组成 | H2渗透系数 /Barrer | H2/CO2选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|
TAM-BDA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 4924.0 | 79.4 | 2020 | [ |
TAM-DMTP-CMP@PSU | 25℃/0.1 MPa | 纯气 | 5808.0 | 55.8 | 2020 | [ |
TAM-DBTP-CMP@PSU | 25℃/0.1 MPa | 纯气 | 6565.0 | 37.3 | 2020 | [ |
TAM-iso-DBTP-CMP@PSU | 25℃/0.1 MPa | 纯气 | 5005.0 | 32.9 | 2020 | [ |
TAM-TPA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 1690.0 | 56.3 | 2020 | [ |
TAM-BPA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 2135.0 | 112.4 | 2020 | [ |
TPB-BDA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 2697.0 | 57.4 | 2020 | [ |
TPB-BPA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 3735.0 | 53.4 | 2020 | [ |
TPB-TPA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 6093.0 | 43.5 | 2020 | [ |
COF-LZU1 | 25℃/0.1 MPa | 纯气 | 1912.2 | 6.4 | 2018 | [ |
COF-LZU1 | 25℃/0.1 MPa | CO2/H2(50∶50) | 1866.8 | 6.0 | 2018 | [ |
ACOF-1 | 25℃/0.1 MPa | 纯气 | 1195.7 | 15.6 | 2018 | [ |
ACOF-1 | 25℃/0.1 MPa | CO2/H2(50∶50) | 1227.6 | 14.1 | 2018 | [ |
COF-LZU1-ACOF-1 | 25℃/0.1 MPa | 纯气 | 732.0 | 26.7 | 2018 | [ |
COF-LZU1-ACOF-1 | 25℃/0.1 MPa | CO2/H2(50∶50) | 669.1 | 24.2 | 2018 | [ |
CMSMs | 25℃/0.1 MPa | 纯气 | 8059.7 | 18.3 | 2021 | [ |
TpTGCl@TpTa-SO3H/COF-LZU1① | 150℃/0.2 MPa | 纯气 | 2163.0 | 26.0 | 2022 | [ |
CTF-BTD/GO① | —/0.1 MPa | 纯气 | 655.6 | 43.1 | 2021 | [ |
nGO | RT/0.1 MPa | 纯气 | 10360.0 | 12.1 | 2021 | [ |
Asymmetric CMSMs① | 110℃/1 MPa | CO2/H2(50∶50) | 111.0 | 36.9 | 2021 | [ |
PABZ-6FDA-PI-CMSMs | 35℃/0.1 MPa | 纯气 | 192.0 | 13.0 | 2020 | [ |
PTI/m-PBI① | 250℃/0.1 MPa | 纯气 | 980.0 | 10.0 | 2020 | [ |
P33DT-ThC4 | —/0.1 MPa | 纯气 | 614.0 | 47.0 | 2019 | [ |
P84/ND | 30℃/0.15 MPa | 纯气 | 6.7 | 4.1 | 2018 | [ |
P84 | 30℃/0.15 MPa | 纯气 | 8.0 | 3.6 | 2018 | [ |
表7 近年来部分H2/CO2分离膜性能汇总
Table 7 Summary of H2/CO2 membrane separation performance in recent years
膜 | 测试条件 | 原料气组成 | H2渗透系数 /Barrer | H2/CO2选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|
TAM-BDA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 4924.0 | 79.4 | 2020 | [ |
TAM-DMTP-CMP@PSU | 25℃/0.1 MPa | 纯气 | 5808.0 | 55.8 | 2020 | [ |
TAM-DBTP-CMP@PSU | 25℃/0.1 MPa | 纯气 | 6565.0 | 37.3 | 2020 | [ |
TAM-iso-DBTP-CMP@PSU | 25℃/0.1 MPa | 纯气 | 5005.0 | 32.9 | 2020 | [ |
TAM-TPA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 1690.0 | 56.3 | 2020 | [ |
TAM-BPA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 2135.0 | 112.4 | 2020 | [ |
TPB-BDA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 2697.0 | 57.4 | 2020 | [ |
TPB-BPA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 3735.0 | 53.4 | 2020 | [ |
TPB-TPA-CMP@PSU | 25℃/0.1 MPa | 纯气 | 6093.0 | 43.5 | 2020 | [ |
COF-LZU1 | 25℃/0.1 MPa | 纯气 | 1912.2 | 6.4 | 2018 | [ |
COF-LZU1 | 25℃/0.1 MPa | CO2/H2(50∶50) | 1866.8 | 6.0 | 2018 | [ |
ACOF-1 | 25℃/0.1 MPa | 纯气 | 1195.7 | 15.6 | 2018 | [ |
ACOF-1 | 25℃/0.1 MPa | CO2/H2(50∶50) | 1227.6 | 14.1 | 2018 | [ |
COF-LZU1-ACOF-1 | 25℃/0.1 MPa | 纯气 | 732.0 | 26.7 | 2018 | [ |
COF-LZU1-ACOF-1 | 25℃/0.1 MPa | CO2/H2(50∶50) | 669.1 | 24.2 | 2018 | [ |
CMSMs | 25℃/0.1 MPa | 纯气 | 8059.7 | 18.3 | 2021 | [ |
TpTGCl@TpTa-SO3H/COF-LZU1① | 150℃/0.2 MPa | 纯气 | 2163.0 | 26.0 | 2022 | [ |
CTF-BTD/GO① | —/0.1 MPa | 纯气 | 655.6 | 43.1 | 2021 | [ |
nGO | RT/0.1 MPa | 纯气 | 10360.0 | 12.1 | 2021 | [ |
Asymmetric CMSMs① | 110℃/1 MPa | CO2/H2(50∶50) | 111.0 | 36.9 | 2021 | [ |
PABZ-6FDA-PI-CMSMs | 35℃/0.1 MPa | 纯气 | 192.0 | 13.0 | 2020 | [ |
PTI/m-PBI① | 250℃/0.1 MPa | 纯气 | 980.0 | 10.0 | 2020 | [ |
P33DT-ThC4 | —/0.1 MPa | 纯气 | 614.0 | 47.0 | 2019 | [ |
P84/ND | 30℃/0.15 MPa | 纯气 | 6.7 | 4.1 | 2018 | [ |
P84 | 30℃/0.15 MPa | 纯气 | 8.0 | 3.6 | 2018 | [ |
1 | Giles J. How to survive a warming world[J]. Nature, 2007, 446(7137): 716-717. |
2 | Keith D W. Why capture CO2 from the atmosphere? [J]. Science, 2009, 325(5948): 1654-1655. |
3 | Haszeldine R S. Carbon capture and storage: how green can black be? [J]. Science, 2009, 325(5948): 1647-1652. |
4 | Gao W L, Liang S Y, Wang R J, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
5 | Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663. |
6 | Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
7 | Baker R. Future directions of membrane gas-separation technology[J]. Membrane Technology, 2001, 2001(138): 5-10. |
8 | Yong W F, Zhang H. Recent advances in polymer blend membranes for gas separation and pervaporation[J]. Progress in Materials Science, 2021, 116: 100713. |
9 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
10 | Wang S F, Li X Q, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
11 | Chuah C Y, Goh K, Yang Y Q, et al. Harnessing filler materials for enhancing biogas separation membranes[J]. Chemical Reviews, 2018, 118(18): 8655-8769. |
12 | Han Y, Ho W S W. Polymeric membranes for CO2 separation and capture[J]. Journal of Membrane Science, 2021, 628: 119244. |
13 | He G W, Huang S Q, Villalobos L F, et al. High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target[J]. Energy & Environmental Science, 2019, 12(11): 3305-3312. |
14 | Yin J, Zhang C C, Yu Y F, et al. Tuning the microstructure of crosslinked poly(ionic liquid) membranes and gels via a multicomponent reaction for improved CO2 capture performance[J]. Journal of Membrane Science, 2020, 593: 117405. |
15 | Vakharia V, Salim W, Wu D Z, et al. Scale-up of amine-containing thin-film composite membranes for CO2 capture from flue gas[J]. Journal of Membrane Science, 2018, 555: 379-387. |
16 | Stannett V. The transport of gases in synthetic polymeric membranes—an historic perspective[J]. Journal of Membrane Science, 1978, 3(2): 97-115. |
17 | van Amerongen G J. The permeability of different rubbers to gases and its relation to diffusivity and solubility[J]. Journal of Applied Physics, 1946, 17(11): 972-985. |
18 | Freeman B D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32(2): 375-380. |
19 | Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. |
20 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
21 | Noble R D. Analysis of facilitated transport with fixed site carrier membranes[J]. Journal of Membrane Science, 1990, 50(2): 207-214. |
22 | Noble R D. Facilitated transport mechanism in fixed site carrier membranes[J]. Journal of Membrane Science, 1991, 60(2/3): 297-306. |
23 | Zhang C X, Wang Z, Cai Y, et al. Investigation of gas permeation behavior in facilitated transport membranes: relationship between gas permeance and partial pressure[J]. Chemical Engineering Journal, 2013, 225: 744-751. |
24 | Zhang Y H, Ma L, Lv Y Q, et al. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation[J]. Chemical Engineering Journal, 2022, 430: 133001. |
25 | Zhou F, Tien H N, Xu W L, et al. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture[J]. Nature Communications, 2017, 8: 2107. |
26 | Ying W, Cai J S, Zhou K, et al. Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane[J]. ACS Nano, 2018, 12(6): 5385-5393. |
27 | Chen K K, Han Y, Zhang Z E, et al. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine[J]. Journal of Membrane Science, 2021, 628: 119215. |
28 | Kim T J, Vrålstad H, Sandru M, et al. Separation performance of PVAm composite membrane for CO2 capture at various pH levels[J]. Journal of Membrane Science, 2013, 428: 218-224. |
29 | Jiao C L, Li Z D, Li X X, et al. Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8[J]. Separation and Purification Technology, 2021, 259: 118190. |
30 | Yu G L, Li Y Q, Wang Z Y, et al. Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation[J]. Journal of Membrane Science, 2019, 591: 117343. |
31 | Lee C S, Kang M, Kim K C, et al. In-situ formation of asymmetric thin-film, mixed-matrix membranes with ZIF-8 in dual-functional imidazole-based comb copolymer for high-performance CO2 capture[J]. Journal of Membrane Science, 2022, 642: 119913. |
32 | Ding R, Dai Y, Zheng W J, et al. Vesicles-shaped MOF-based mixed matrix membranes with intensified interfacial affinity and CO2 transport freeway[J]. Chemical Engineering Journal, 2021, 414: 128807. |
33 | Dong S L, Wang Z, Sheng M L, et al. High-performance multi-layer composite membrane with enhanced interlayer compatibility and surface crosslinking for CO2 separation[J]. Journal of Membrane Science, 2020, 610: 118221. |
34 | Sheng M L, Dong S L, Qiao Z H, et al. Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture[J]. Journal of Membrane Science, 2021, 636: 119595. |
35 | Karunakaran M, Villalobos L F, Kumar M, et al. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture[J]. Journal of Materials Chemistry A, 2017, 5(2): 649-656. |
36 | Guiver M D, Yahia M, Dal-Cin M M, et al. Gas transport in a polymer of intrinsic microporosity (PIM-1) substituted with pseudo-ionic liquid tetrazole-type structures[J]. Macromolecules, 2020, 53(20): 8951-8959. |
37 | Liang Y Y, Zhang R Q, Qiao Z H, et al. Regulating interface nucleus growth of CuTCPP membranes via polymer collaboration method[J]. Separation and Purification Technology, 2022, 282: 120045. |
38 | Liu N, Cheng J, Hou W, et al. Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes[J]. Separation and Purification Technology, 2022, 282: 120007. |
39 | Liu N, Cheng J, Hu L Q, et al. Boosting CO2 transport of poly (ethylene oxide) membranes by hollow Rubik-like “expressway” channels with anion pillared hybrid ultramicroporous materials[J]. Chemical Engineering Journal, 2022, 427: 130845. |
40 | Kunalan S, Palanivelu K, Sachin E K, et al. Thin-film hydrogel polymer layered polyvinyltrimethylsilane dual-layer flat-bed composite membrane for CO2 gas separation[J]. Journal of Applied Polymer Science, 2022, 139(17): 52024. |
41 | Wang Y H, Zhou Y, Zhang X R, et al. SPEEK membranes by incorporation of NaY zeolite for CO2/N2 separation[J]. Separation and Purification Technology, 2021, 275: 119189. |
42 | Wan X Y, Wan T, Cao C C, et al. Accelerating CO2 transport through nanoconfined magnetic ionic liquid in laminated BN membrane[J]. Chemical Engineering Journal, 2021, 423: 130309. |
43 | Xu R S, Li L, Wang Y, et al. Thermal crosslinking membrane with enhanced CO2 separation performance derived from nitrile-containing phenolphthalein-based poly(arylene ether ketone)[J]. Journal of Membrane Science, 2021, 637: 119634. |
44 | Chen W B, Zhang Z G, Yang C C, et al. PIM-based mixed-matrix membranes containing MOF-801/ionic liquid nanocomposites for enhanced CO2 separation performance[J]. Journal of Membrane Science, 2021, 636: 119581. |
45 | Han W Y, Zhang C L, Zhao M, et al. Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance[J]. Journal of Membrane Science, 2021, 636: 119544. |
46 | Cao Q Q, Ding X L, Zhao H Y, et al. Improving gas permeation performance of PDMS by incorporating hollow polyimide nanoparticles with microporous shells and preparing defect-free composite membranes for gas separation[J]. Journal of Membrane Science, 2021, 635: 119508. |
47 | Deng G X, Luo J Z, Liu X Y, et al. Fabrication of high-performance mixed-matrix membranes via constructing an in situ crosslinked polymer matrix for gas separations[J]. Separation and Purification Technology, 2021, 271: 118859. |
48 | Xu S S, Huang H L, Guo X Y, et al. Highly selective gas transport channels in mixed matrix membranes fabricated by using water-stable Cu-BTC[J]. Separation and Purification Technology, 2021, 257: 117979. |
49 | Guo F, Li B Z, Ding R, et al. A novel composite material UiO-66@HNT/Pebax mixed matrix membranes for enhanced CO2/N2 separation[J]. Membranes, 2021, 11(9): 693. |
50 | Lee T H, Ozcan A, Park I, et al. Disclosing the role of defect-engineered metal-organic frameworks in mixed matrix membranes for efficient CO2 separation: a joint experimental-computational exploration[J]. Advanced Functional Materials, 2021, 31(38): 2103973. |
51 | Kojabad M E, Babaluo A, Tavakoli A. A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: molecular simulation and experimental study[J]. Separation and Purification Technology, 2021, 266: 118494. |
52 | Zhang B, Yang C, Zheng Y F, et al. Modification of CO2-selective mixed matrix membranes by a binary composition of poly(ethylene glycol)/NaY zeolite[J]. Journal of Membrane Science, 2021, 627: 119239. |
53 | Fan S T, Qiu Z J, Xu R Y, et al. Ultrahigh carbon dioxide-selective composite membrane containing a γ-CD-MOF layer[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13034-13043. |
54 | Park B J, Kim N U, Lee C S, et al. Synthesis, characterization, and CO2/N2 separation performance of POEM-g-PAcAm comb copolymer membranes[J]. Polymers, 2021, 13(2): 177. |
55 | Lu J F, Zhang X, Xu L S, et al. Preparation of amino-functional UiO-66/PIMs mixed matrix membranes with [ b m i m ] [ t f 2 N ] as regulator for enhanced gas separation[J]. Membranes, 2021, 11(1): 35. |
56 | Hossain I, Husna A, Chaemchuen S, et al. Cross-linked mixed-matrix membranes using functionalized UiO-66-NH2 into PEG/PPG-PDMS-based rubbery polymer for efficient CO2 separation[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57916-57931. |
57 | Bei P Z, Liu H J, Zhang Y, et al. Preparation and characterization of polyimide membranes modified by a task-specific ionic liquid based on Schiff base for CO2/N2 separation[J]. Environmental Science and Pollution Research International, 2021, 28(1): 738-753. |
58 | Kim D, Hossain I, Kim Y, et al. PEG/PPG-PDMS-adamantane-based crosslinked terpolymer using the ROMP technique to prepare a highly permeable and CO2-selective polymer membrane[J]. Polymers, 2020, 12(8): 1674. |
59 | Kusuma V A, McNally J S, Baker J S, et al. Cross-linked polyphosphazene blends as robust CO2 separation membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30787-30795. |
60 | Wind J D, Paul D R, Koros W J. Natural gas permeation in polyimide membranes[J]. Journal of Membrane Science, 2004, 228(2): 227-236. |
61 | Huo G L, Xu S, Wu L, et al. Structural engineering on copolyimide membranes for improved gas separation performance[J]. Journal of Membrane Science, 2022, 643: 119989. |
62 | Zhang C L, Li P, Cao B. Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance[J]. Journal of Membrane Science, 2017, 528: 206-216. |
63 | Xie W, Jiao Y, Cai Z L, et al. Highly selective benzimidazole-based polyimide/ionic polyimide membranes for pure- and mixed-gas CO2/CH4 separation[J]. Separation and Purification Technology, 2022, 282: 120091. |
64 | Li W X, Peng L F, Li Y H, et al. Hyper cross-linked polymers containing amino group functionalized polyimide mixed matrix membranes for gas separation[J]. Journal of Applied Polymer Science, 2022, 139(20): 52171. |
65 | Chen K, Ni L H, Zhang H, et al. Veiled metal organic frameworks nanofillers for mixed matrix membranes with enhanced CO2/CH4 separation performance[J]. Separation and Purification Technology, 2021, 279: 119707. |
66 | Chisca S, Bettahalli N M S, Musteata V E, et al. Thermal treatment of hydroxyl functionalized polytriazole and its effect on gas transport: from crosslinking to carbon molecular sieve[J]. Journal of Membrane Science, 2022, 642: 119963. |
67 | Zhang Y S, Jia H G, Wang Q J, et al. Optimization of a MOF blended with modified polyimide membrane for high-performance gas separation[J]. Membranes, 2022, 12(1): 34. |
68 | Liu F, Zhu W F, Gou M M, et al. Mixed-matrix membranes based on Li1.6Mn1.6O4 (LMO) ultrathin nanosheet for high-performance CO2 separation[J]. Journal of the Chinese Chemical Society, 2022, 69(2): 289-300. |
69 | He L, Lu Y H, Xiao G Y, et al. Phthalide-containing poly(ether-imide)s based thermal rearrangement membranes for gas separation application[J]. RSC Advances, 2022, 12(2): 728-742. |
70 | Shabani F, Aroon M A, Matsuura T, et al. CO2/CH4 separation properties of PES mixed matrix membranes containing Fullerene-MWCNTs hybrids[J]. Separation and Purification Technology, 2021, 277: 119636. |
71 | Ch'ng C W M, Yeong Y F, Jusoh N, et al. High performance membranes containing zeolitic imidazolate framework-8 and polysulfone for CO2 removal from CH4 [J]. Journal of Chemical Technology & Biotechnology, 2022, 97(4): 995-1005. |
72 | Lv X, Huang L, Ding S Y, et al. Mixed matrix membranes comprising dual-facilitated bio-inspired filler for enhancing CO2 separation[J]. Separation and Purification Technology, 2021, 276: 119347. |
73 | Regmi C, Ashtiani S, Hrdlička Z, et al. CO2/CH4 and H2/CH4 gas separation performance of CTA-TNT@CNT hybrid mixed matrix membranes[J]. Membranes, 2021, 11(11): 862. |
74 | Zhang Q, Zhou M, Liu X F, et al. Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation[J]. Journal of Membrane Science, 2021, 636: 119612. |
75 | Wang X L, Wu L, Li N W, et al. Sealing Tröger base/ZIF-8 mixed matrix membranes defects for improved gas separation performance[J]. Journal of Membrane Science, 2021, 636: 119582. |
76 | Xu S, Ren X L, Zhao N, et al. Self-crosslinking of bromomethylated 6FDA-DAM polyimide for gas separations[J]. Journal of Membrane Science, 2021, 636: 119534. |
77 | Fan W D, Ying Y P, Peh S B, et al. Multivariate polycrystalline metal-organic framework membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2021, 143(42): 17716-17723. |
78 | Regmi C, Ashtiani S, Sofer Z, et al. Improved CO2/CH4 separation properties of cellulose triacetate mixed-matrix membranes with CeO2@GO hybrid fillers[J]. Membranes, 2021, 11(10): 777. |
79 | Zhao X N, Liu W, Liu X F, et al. Mixed matrix membranes incorporated with aminosilane-functionalized SAPO-34 for upgrading CO2/CH4 separation performances[J]. Industrial & Engineering Chemistry Research, 2021, 60(38): 13927-13937. |
80 | Hu L Q, Cheng J, Li Y N, et al. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes[J]. Applied Surface Science, 2017, 410: 249-258. |
81 | Shao P P, Yao R X, Li G, et al. Molecular-sieving membrane by partitioning the channels in ultrafiltration membrane by in situ polymerization[J]. Angewandte Chemie International Edition, 2020, 59(11): 4401-4405. |
82 | Fan H W, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. Journal of the American Chemical Society, 2018, 140(32): 10094-10098. |
83 | Douna I, Farrukh S, Hussain A, et al. Experimental investigation of polysulfone modified cellulose acetate membrane for CO2/H2 gas separation[J]. Korean Journal of Chemical Engineering, 2022, 39(1): 189-197. |
84 | Ashtiani S, Sofer Z, Průša F, et al. Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations[J]. Separation and Purification Technology, 2021, 274: 119003. |
85 | Wang P Y, Peng Y, Zhu C Y, et al. Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation[J]. Angewandte Chemie International Edition, 2021, 60(35): 19047-19052. |
86 | Wong K C, Goh P S, Ismail A F. Enhancing hydrogen gas separation performance of thin film composite membrane through facilely blended polyvinyl alcohol and PEBAX[J]. International Journal of Hydrogen Energy, 2021, 46(37): 19737-19748. |
87 | Xu X, Wang J, Zhou A, et al. High-efficiency CO2 separation using hybrid LDH-polymer membranes[J]. Nature Communications, 2021, 12: 3069. |
88 | Ashtiani S, Khoshnamvand M, Bouša D, et al. Surface and interface engineering in CO2-philic based UiO-66-NH2-PEI mixed matrix membranes via covalently bridging PVP for effective hydrogen purification[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5449-5458. |
89 | Yang Y T, Han Y, Pang R Z, et al. Amine-containing membranes with functionalized multi-walled carbon nanotubes for CO2/H2 separation[J]. Membranes, 2020, 10(11): 333. |
90 | Gouveia A S L, Malcaitè E, Lozinskaya E I, et al. Poly(ionic liquid)-ionic liquid membranes with fluorosulfonyl-derived anions: characterization and biohydrogen separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7087-7096. |
91 | Nigiz F U, Hilmioglu N D. Enhanced hydrogen purification by graphene-poly(dimethyl siloxane) membrane[J]. International Journal of Hydrogen Energy, 2020, 45(5): 3549-3557. |
92 | Shamsabadi A A, Isfahani A P, Salestan S K, et al. Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2T x MXene nanosheets[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3984-3992. |
93 | Lee J Y, Park C Y, Moon S Y, et al. Surface-attached brush-type CO2-philic poly(PEGMA)/PSf composite membranes by UV/ozone-induced graft polymerization: fabrication, characterization, and gas separation properties[J]. Journal of Membrane Science, 2019, 589: 117214. |
94 | Ying W, Zhou K, Hou Q G, et al. Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field[J]. Journal of Materials Chemistry A, 2019, 7(25): 15062-15067. |
95 | Ying W, Hou Q G, Chen D K, et al. Electrical field facilitates selective transport of CO2 through a laminated MoS2 supported ionic liquid membrane[J]. Journal of Materials Chemistry A, 2019, 7(16): 10041-10046. |
96 | Gouveia A S L, Ventaja L, Tomé L C, et al. Towards biohydrogen separation using poly(ionic liquid)/ionic liquid composite membranes[J]. Membranes, 2018, 8(4): 124. |
97 | Hu L Q, Liu J Y, Zhu L X, et al. Highly permeable mixed matrix materials comprising ZIF-8 nanoparticles in rubbery amorphous poly(ethylene oxide) for CO2 capture[J]. Separation and Purification Technology, 2018, 205: 58-65. |
98 | Prasad B, Mandal B. Graphene-incorporated biopolymeric mixed-matrix membrane for enhanced CO2 separation by regulating the support pore filling[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27810-27820. |
99 | Hu L Q, Cheng J, Li Y N, et al. Optimization of coating solution viscosity of hollow fiber-supported polydimethylsiloxane membrane for CO2/H2 separation[J]. Journal of Applied Polymer Science, 2018, 135(5): 45765. |
100 | Chen D K, Ying W, Guo Y, et al. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44251-44257. |
101 | Liu Z, Liu C, Li L F, et al. CO2 separation by supported ionic liquid membranes and prediction of separation performance[J]. International Journal of Greenhouse Gas Control, 2016, 53: 79-84. |
102 | Wu R, Yue W Z, Li Y H, et al. Ultra-thin and high hydrogen permeable carbon molecular sieve membrane prepared by using polydopamine as carbon precursor[J]. Materials Letters, 2021, 295: 129863. |
103 | Ying Y P, Peh S B, Yang H, et al. Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation[J]. Advanced Materials, 2022, 34(25): 2104946. |
104 | Zhao Y J, Liu P, Ying Y P, et al. Heating-driven assembly of covalent organic framework nanosheets for gas separation[J]. Journal of Membrane Science, 2021, 632: 119326. |
105 | Kim J P, Choi E, Kang J, et al. Ultrafast H2-selective nanoporous multilayer graphene membrane prepared by confined thermal annealing[J]. Chemical Communications, 2021, 57(70): 8730-8733. |
106 | Lei L F, Lindbråthen A, Hillestad M, et al. Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process[J]. Journal of Membrane Science, 2021, 627: 119241. |
107 | Liang J C, Wang Z G, Huang M H, et al. Effects on carbon molecular sieve membrane properties for a precursor polyimide with simultaneous flatness and contortion in the repeat unit[J]. ChemSusChem, 2020, 13(20): 5531-5538. |
108 | Villalobos L F, Vahdat M T, Dakhchoune M, et al. Large-scale synthesis of crystalline g-C3N4 nanosheets and high-temperature H2 sieving from assembled films[J]. Science Advances, 2020, 6(4): eaay98514. |
109 | Zhang M X, Jing X C, Zhao S, et al. Electropolymerization of molecular-sieving polythiophene membranes for H2 separation[J]. Angewandte Chemie International Edition, 2019, 58(26): 8768-8772. |
110 | Pulyalina A, Polotskaya G, Rostovtseva V, et al. Improved hydrogen separation using hybrid membrane composed of nanodiamonds and P84 copolyimide[J]. Polymers, 2018, 10(8): 828. |
111 | 王志, 原野, 生梦龙, 等. 膜法碳捕集技术: 研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
Wang Z, Yuan Y, Sheng M L, et al. Membrane technology for carbon capture—research status and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[8] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[11] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[12] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[13] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[14] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[15] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||