化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2468-2476.DOI: 10.11949/0438-1157.20230293
韩奎奎1(), 谭湘龙1, 李金芝2, 杨婷1, 张春1(), 张永汾2, 刘洪全2, 于中伟2, 顾学红1()
收稿日期:
2023-03-27
修回日期:
2023-06-06
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
张春,顾学红
作者简介:
韩奎奎(1997—),男,硕士研究生,han17826150078@163.com
基金资助:
Kuikui HAN1(), Xianglong TAN1, Jinzhi LI2, Ting YANG1, Chun ZHANG1(), Yongfen ZHANG2, Hongquan LIU2, Zhongwei YU2, Xuehong GU1()
Received:
2023-03-27
Revised:
2023-06-06
Online:
2023-06-05
Published:
2023-07-27
Contact:
Chun ZHANG, Xuehong GU
摘要:
采用二次生长法在高机械强度、高装填密度的四通道α-Al2O3中空纤维载体(7 cm)上制备MFI分子筛膜,探究了膜合成时间、操作温度、原料分压和吹扫气流量等条件对二甲苯异构体膜分离性能的影响。结果表明,160℃水热合成12 h制得的四通道中空纤维MFI分子筛膜对二甲苯异构体分离性能较优,在150℃、原料分压2 kPa、吹扫气流量20 ml/min时对二甲苯/邻二甲苯分离因子高达878,PX渗透性为2.1×10-8 mol·m-2·s-1·Pa-1。基于优化的制膜及分离操作条件,进一步将MFI分子筛膜制备于27 cm长的四通道中空纤维载体上,也获得了优异的对二甲苯/邻二甲苯膜分离性能,且所制得的膜材料对该体系的分离可稳定运行100 h以上。为推进中空纤维MFI分子筛膜的批量化制备和传统分离工艺的技术革新奠定了基础。
中图分类号:
韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476.
Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers[J]. CIESC Journal, 2023, 74(6): 2468-2476.
样品 | 合成时间/h | 膜厚/μm | 膜性能 | |||
---|---|---|---|---|---|---|
PX渗透性/ (10-8 mol·m-2·s-1·Pa-1) | OX渗透性/ (10-10 mol·m-2·s-1·Pa-1) | 渗透侧PX 摩尔分数/% | PX/OX 分离因子 | |||
M1 | 4 | 6 | 3.1 | 5.8 | 98.5 | 53.2 |
M2 | 8 | 10 | 2.9 | 0.9 | 99.7 | 319 |
M3 | 12 | 12 | 2.1 | 0.2 | 99.9 | 878 |
M4 | 16 | 18 | 2.0 | 1.3 | 99.5 | 154 |
表1 不同合成时间制得MFI分子筛膜膜厚及PX/OX分离性能
Table 1 Thickness and PX/OX separation performance of MFI zeolite membranes synthesized with different time
样品 | 合成时间/h | 膜厚/μm | 膜性能 | |||
---|---|---|---|---|---|---|
PX渗透性/ (10-8 mol·m-2·s-1·Pa-1) | OX渗透性/ (10-10 mol·m-2·s-1·Pa-1) | 渗透侧PX 摩尔分数/% | PX/OX 分离因子 | |||
M1 | 4 | 6 | 3.1 | 5.8 | 98.5 | 53.2 |
M2 | 8 | 10 | 2.9 | 0.9 | 99.7 | 319 |
M3 | 12 | 12 | 2.1 | 0.2 | 99.9 | 878 |
M4 | 16 | 18 | 2.0 | 1.3 | 99.5 | 154 |
载体类型 | 晶体取向 | 测试温度/℃ | PX渗透性/(10-8 mol·m-2·s-1·Pa-1) | PX/OX分离因子 | 文献 |
---|---|---|---|---|---|
α-Al2O3片式 | b | 100 | 20 | 600 | [ |
SiO2片式 | b | 150 | 29 | 8000 | [ |
SiO2片式 | b | 150 | 23 | 3990 | [ |
SiO2片式 | b | 150 | 14 | 515 | [ |
SiO2片式 | b | 150 | 23 | 1100 | [ |
α-Al2O3片式 | 随机 | 300 | 1.02 | 76 | [ |
SiO2片式 | 随机 | 150 | 4.8 | 162 | [ |
α-Al2O3管式(8 cm) | 随机 | 250 | 0.95 | 17.8 | [ |
不锈钢管式(—) | 随机 | 150 | 0.66 | 13.5 | [ |
不锈钢管式(2.5 cm) | 随机 | 152 | 0.26 | 60 | [ |
α-Al2O3管式(15 cm) | 随机 | 200 | 1.1 | >400 | [ |
四通道α-Al2O3中空纤维(7 cm) | 随机 | 150 | 2.1 | 878 | 本工作 |
四通道α-Al2O3中空纤维(27 cm) | 随机 | 150 | 1.9 | 245 | 本工作 |
表2 MFI分子筛膜对二甲苯异构体的分离性能对比
Table 2 Comparisons of the performance of MFI zeolite membranes for xylene isomer separation
载体类型 | 晶体取向 | 测试温度/℃ | PX渗透性/(10-8 mol·m-2·s-1·Pa-1) | PX/OX分离因子 | 文献 |
---|---|---|---|---|---|
α-Al2O3片式 | b | 100 | 20 | 600 | [ |
SiO2片式 | b | 150 | 29 | 8000 | [ |
SiO2片式 | b | 150 | 23 | 3990 | [ |
SiO2片式 | b | 150 | 14 | 515 | [ |
SiO2片式 | b | 150 | 23 | 1100 | [ |
α-Al2O3片式 | 随机 | 300 | 1.02 | 76 | [ |
SiO2片式 | 随机 | 150 | 4.8 | 162 | [ |
α-Al2O3管式(8 cm) | 随机 | 250 | 0.95 | 17.8 | [ |
不锈钢管式(—) | 随机 | 150 | 0.66 | 13.5 | [ |
不锈钢管式(2.5 cm) | 随机 | 152 | 0.26 | 60 | [ |
α-Al2O3管式(15 cm) | 随机 | 200 | 1.1 | >400 | [ |
四通道α-Al2O3中空纤维(7 cm) | 随机 | 150 | 2.1 | 878 | 本工作 |
四通道α-Al2O3中空纤维(27 cm) | 随机 | 150 | 1.9 | 245 | 本工作 |
1 | 邢卫红, 顾学红. 高性能膜材料与膜技术[M]. 北京: 化学工业出版社, 2017. |
Xing W H, Gu X H. High Performance Membrane Materials and Membrane Technology[M]. Beijing: Chemical Industry Press, 2017. | |
2 | Li Y C, Zhu G F, Wang Y, et al. Preparation, mechanism and applications of oriented MFI zeolite membranes: a review[J]. Microporous and Mesoporous Materials, 2021, 312: 110790. |
3 | Wu Z Q, Zhang C, Peng L, et al. Enhanced stability of MFI zeolite membranes for separation of ethanol/water by eliminating surface Si—OH groups[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3175-3180. |
4 | Coronas J, Noble R D, Falconer J L. Separations of C4 and C6 isomers in ZSM-5 tubular membranes[J]. Industrial & Engineering Chemistry Research, 1998, 37(1): 166-176. |
5 | Sun K, Liu B, Zhong S L, et al. Fast preparation of oriented silicalite-1 membranes by microwave heating for butane isomer separation[J]. Separation and Purification Technology, 2019, 219: 90-99. |
6 | Zhang H X, Oh Y J, Tikue E T, et al. Enrichment of spent SF6 gas by zeolite membranes for direct reuse in gas-insulated switchgear units[J]. Separation and Purification Technology, 2022, 303: 122223. |
7 | Hong Z, Zhang C, Gu X H, et al. A simple method for healing nonzeolitic pores of MFI membranes by hydrolysis of silanes[J]. Journal of Membrane Science, 2011, 366(1/2): 427-435. |
8 | Lai Z P, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
9 | Jeon M Y, Kim D, Kumar P, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017, 543(7647): 690-694. |
10 | Choi J, Jeong H K, Snyder M A, et al. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing[J]. Science, 2009, 325(5940): 590-593. |
11 | Park S, Lee M, Hong S, et al. Low-temperature ozone treatment for p-xylene perm-selective MFI type zeolite membranes: unprecedented revelation of performance-negating cracks larger than 10 nm in polycrystalline membrane structures[J]. Journal of Membrane Science, 2022, 668: 121212. |
12 | 夏敦焰, 彭莉, 吴政奇, 等. MFI型分子筛膜的两段变温合成及对二甲苯异构体的分离性能[J]. 高等学校化学学报, 2020, 41(12): 2813-2821. |
Xia D Y, Peng L, Wu Z Q, et al. Two-stage varying-temperature synthesis of MFI zeolite membrane and their separation performance for xylene isomers[J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2813-2821. | |
13 | Shi Z Z, Zhang Y T, Cai C, et al. Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration[J]. Ceramics International, 2015, 41(1): 1333-1339. |
14 | Cai C, Zhang Y T, Zhang C, et al. Microstructure modulation of α-Al2O3 hollow fiber membranes with four-channel geometric configuration[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(6): 949-957. |
15 | 陈园园, 时振洲, 张春, 等. 相转化凝固浴对Al2O3中空纤维多孔载体微观结构的影响[J]. 无机材料学报, 2014, 29(2): 143-148. |
Chen Y Y, Shi Z Z, Zhang C, et al. Effect of coagulation bath in phase inversion on microstructure of hollow fiber porous Al2O3 support[J]. Journal of Inorganic Materials, 2014, 29(2): 143-148. | |
16 | Liu Y M, Wang X R, Zhang Y T, et al. Scale-up of NaA zeolite membranes on α-Al2O3 hollow fibers by a secondary growth method with vacuum seeding[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1114-1122. |
17 | Liu D Z, Zhang Y T, Jiang J, et al. High-performance NaA zeolite membranes supported on four-channel ceramic hollow fibers for ethanol dehydration[J]. RSC Advances, 2015, 5(116): 95866-95871. |
18 | Wang X R, Jiang J, Liu D Z, et al. Evaluation of hollow fiber T-type zeolite membrane modules for ethanol dehydration[J]. Chinese Journal of Chemical Engineering, 2017, 25(5): 581-586. |
19 | Ji M M, Gao X C, Wang X R, et al. An ensemble synthesis strategy for fabrication of hollow fiber T-type zeolite membrane modules[J]. Journal of Membrane Science, 2018, 563: 460-469. |
20 | Jiang J, Peng L, Wang X R, et al. Effect of Si/Al ratio in the framework on the pervaporation properties of hollow fiber CHA zeolite membranes[J]. Microporous and Mesoporous Materials, 2019, 273: 196-202. |
21 | Chen C, Cheng Y L, Peng L, et al. Fabrication and stability exploration of hollow fiber mordenite zeolite membranes for isopropanol/water mixture separation[J]. Microporous and Mesoporous Materials, 2019, 274: 347-355. |
22 | Du P, Zhang Y T, Wang X R, et al. Control of zeolite framework flexibility for ultra-selective carbon dioxide separation[J]. Nature Communications, 2022, 13(1): 1427. |
23 | Du P, Song J Y, Wang X R, et al. Efficient scale-up synthesis and hydrogen separation of hollow fiber DD3R zeolite membranes[J]. Journal of Membrane Science, 2021, 636: 119546. |
24 | 张春, 韩奎奎, 王学瑞, 等. 制备条件对多孔不锈钢中空纤维载体微结构的影响[J]. 南京工业大学学报(自然科学版), 2021, 43(6): 677-684. |
Zhang C, Han K K, Wang X R, et al. Effects of preparation condition on microstructure of porous stainless steel hollow fiber substrates[J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43(6): 677-684. | |
25 | Park J H, Kim D. High-temperature vapor permeation of preferentially b-oriented zeolite MFI membranes fabricated from nanocrystal-containing nanosheets[J]. Separation and Purification Technology, 2023, 315: 123709. |
26 | Banihashemi F, Lin J Y S. B-oriented MFI zeolite membranes for xylene isomer separation—effect of xylene activity on separation performance[J]. Journal of Membrane Science, 2022, 652: 120492. |
27 | Pham T C T, Nguyen T H, Yoon K B. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation[J]. Angewandte Chemie International Edition, 2013, 52(33): 8693-8698. |
28 | Banihashemi F, Meng L, Babaluo A A, et al. Xylene vapor permeation in MFI zeolite membranes made by templated and template-free secondary growth of randomly oriented seeds: effects of xylene activity and microstructure[J]. Industrial & Engineering Chemistry Research, 2018, 57(47): 16059-16068. |
29 | Gu X H, Dong J H, Nenoff T M, et al. Separation of p-xylene from multicomponent vapor mixtures using tubular MFI zeolite membranes[J]. Journal of Membrane Science, 2006, 280(1/2): 624-633. |
30 | Tarditi A M, Horowitz G I, Lombardo E A. A durable ZSM-5/SS composite tubular membrane for the selective separation of p-xylene from its isomers[J]. Journal of Membrane Science, 2006, 281(1/2): 692-699. |
31 | Gump C J, Tuan V A, Noble R D, et al. Aromatic permeation through crystalline molecular sieve membranes[J]. Industrial & Engineering Chemistry Research, 2001, 40(2): 565-577. |
32 | Daramola M O, Burger A J, Giroir-Fendler A, et al. Extractor-type catalytic membrane reactor with nanocomposite MFI-alumina membrane tube as separation unit: prospect for ultra-pure para-xylene production from m-xylene isomerization over Pt-HZSM-5 catalyst[J]. Applied Catalysis A: General, 2010, 386(1/2): 109-115. |
[1] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[2] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[3] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[4] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[5] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[6] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[7] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[8] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[9] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[10] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[11] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[12] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[13] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[14] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[15] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 310
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 258
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||