1 |
Nuévalos M, García-Ríos E, Mancebo F J, et al. Novel monoclonal antibody-based therapies: implications for the treatment and prevention of HCMV disease[J]. Trends in Microbiology, 2023, 31(5): 480-497.
|
2 |
Chen Y, Zhang G L, Yang Y W, et al. The treatment of inflammatory bowel disease with monoclonal antibodies in Asia[J]. Biomedicine & Pharmacotherapy, 2023, 157: 114081.
|
3 |
Chi E Y, Krishnan S, Randolph T W, et al. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation[J]. Pharmaceutical Research, 2003, 20(9): 1325-1336.
|
4 |
Kosloski M P, Miclea R D, Balu-Iyer S V. Role of glycosylation in conformational stability, activity, macromolecular interaction and immunogenicity of recombinant human factor Ⅷ[J]. The AAPS, Journal, 2009, 11(3): 424-431.
|
5 |
Johann F, Wöll S, Winzer M, et al. Miniaturized forced degradation of therapeutic proteins and ADCs by agitation-induced aggregation using orbital shaking of microplates[J]. Journal of Pharmaceutical Sciences, 2022, 111(5): 1401-1413.
|
6 |
金鹤. 静脉输液中不溶性微粒对人体的危害及控制[J]. 上海护理, 2007, 7(5): 55-57.
|
|
Jin H. Harm and control of insoluble particles in intravenous infusion to human body[J]. Shanghai Nursing, 2007, 7(5): 55-57.
|
7 |
Joubert M K, Hokom M, Eakin C, et al. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses[J]. Journal of Biological Chemistry, 2012, 287(30): 25266-25279.
|
8 |
郭莎, 贾哲, 吴昊, 等. 单克隆抗体颗粒表征的现状与挑战[J]. 中国药事, 2022, 36(2)161-169.
|
|
Guo S, Jia Z, Wu H, et al. Current status and challenges of particle characterization in monoclonal antibody formulation[J]. Chinese Pharmaceutical Affairs, 2022, 36(2)161-169.
|
9 |
Patapoff T W, Esue O. Polysorbate 20 prevents the precipitation of a monoclonal antibody during shear[J]. Pharmaceutical Development and Technology, 2009, 14(6): 659-664.
|
10 |
Bam N B, Cleland J L, Yang J, et al. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions[J]. Journal of Pharmaceutical Sciences, 1998, 87(12): 1554-1559.
|
11 |
Wang W, Wang Y J, Wang D Q. Dual effects of Tween 80 on protein stability[J]. International Journal of Pharmaceutics, 2008, 347(1/2): 31-38.
|
12 |
Perevozchikova T, Nanda H, Nesta D P, et al. Protein adsorption, desorption, and aggregation mediated by solid-liquid interfaces[J]. Journal of Pharmaceutical Sciences, 2015, 104(6): 1946-1959.
|
13 |
Kaivosoja E, Barreto G, Levón K, et al. Chemical and physical properties of regenerative medicine materials controlling stem cell fate[J]. Annals of Medicine, 2012, 44(7): 635-650.
|
14 |
Wu H, Randolph T W. Aggregation and particle formation during pumping of an antibody formulation are controlled by electrostatic interactions between pump surfaces and protein molecules[J]. Journal of Pharmaceutical Sciences, 2020, 109(4): 1473-1482.
|
15 |
Movafaghi S, Wu H, Francino Urdániz I M, et al. The effect of container surface passivation on aggregation of intravenous immunoglobulin induced by mechanical shock[J]. Biotechnology Journal, 2020, 15(9): e2000096.
|
16 |
Yoneda S, Maruno T, Mori A, et al. Influence of protein adsorption on aggregation in prefilled syringes[J]. Journal of Pharmaceutical Sciences, 2021, 110(11): 3568-3579.
|
17 |
Biddlecombe J G, Craig A V, Zhang H, et al. Determining antibody stability: creation of solid-liquid interfacial effects within a high shear environment[J]. Biotechnology Progress, 2007, 23(5): 1218-1222.
|
18 |
Oliva A, Santoveña A, Fariña J, et al. Effect of high shear rate on stability of proteins: kinetic study[J]. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33(2): 145-155.
|
19 |
Sediq A S, van Duijvenvoorde R B, Jiskoot W, et al. No touching!Abrasion of adsorbed protein is the root cause of subvisible particle formation during stirring[J]. Journal of Pharmaceutical Sciences, 2016, 105(2): 519-529.
|
20 |
Gerhardt A, McGraw N R, Schwartz D K, et al. Protein aggregation and particle formation in prefilled glass syringes[J]. Journal of Pharmaceutical Sciences, 2014, 103(6): 1601-1612.
|
21 |
Qi L, Liu J, Ronk M, et al. A holistic approach of extractables and leachables assessment of rubber stoppered glass vial systems for biotechnology products[J]. Journal of Pharmaceutical Sciences, 2021, 110(11): 3580-3593.
|
22 |
Oom A, Poggi M, Wikström J, et al. Surface interactions of monoclonal antibodies characterized by quartz crystal microbalance with dissipation: impact of hydrophobicity and protein self-interactions[J]. Journal of Pharmaceutical Sciences, 2012, 101(2): 519-529.
|
23 |
Gao F F. Adsorption of mussel protein on polymer antifouling membranes: a molecular dynamics study[J]. Molecules (Basel, Switzerland), 2021, 26(18): 5660.
|
24 |
Marsh R J, Jones R A L, Sferrazza M. Adsorption and displacement of a globular protein on hydrophilic and hydrophobic surfaces[J]. Colloids and Surfaces B: Biointerfaces, 2002, 23(1): 31-42.
|
25 |
Lefebvre G, Maze A, Jimenez R A P, et al. Surfactant protection efficacy at surfaces varies with the nature of hydrophobic materials[J]. Pharmaceutical Research, 2021, 38(12): 2157-2166.
|
26 |
Bainor A, Chang L, McQuade T J, et al. Bicinchoninic acid (BCA) assay in low volume[J]. Analytical Biochemistry, 2011, 410(2): 310-312.
|
27 |
Gerhardt A, Bonam K, Bee J S, et al. Ionic strength affects tertiary structure and aggregation propensity of a monoclonal antibody adsorbed to silicone oil-water interfaces[J]. Journal of Pharmaceutical Sciences, 2013, 102(2): 429-440.
|
28 |
Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization[J]. Pharmaceutical Research, 2008, 25(7): 1487-1499.
|
29 |
Ying P Q, Yu Y, Jin G, et al. Competitive protein adsorption studied with atomic force microscopy and imaging ellipsometry[J]. Colloids and Surfaces B: Biointerfaces, 2003, 32(1): 1-10.
|
30 |
Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces[J]. Advances in Colloid and Interface Science, 2011, 162(1/2): 87-106.
|
31 |
Chen S F, Liu L Y, Zhou J, et al. Controlling antibody orientation on charged self-assembled monolayers[J]. Langmuir, 2003, 19: 2859-2864.
|
32 |
Bee J S, Schwartz D K, Trabelsi S, et al. Production of particles of therapeutic proteins at the air-water interface during compression/dilation cycles[J]. Soft Matter, 2012, 8(40): 10329-10335.
|
33 |
Haynes Charles A, Willem N. Globular proteins at solid/liquid interfaces[J]. Colloids and Surfaces B: Biointerfaces, 1994, 2(6): 517-566.
|
34 |
Mathes J, Friess W. Influence of pH and ionic strength on IgG adsorption to vials[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78(2): 239-247.
|
35 |
Quan X B, Liu J, Zhou J. Multiscale modeling and simulations of protein adsorption: progresses and perspectives[J]. Current Opinion in Colloid & Interface Science, 2019, 41: 74-85.
|
36 |
Wu H, Randolph T W. Rapid quantification of protein particles in high-concentration antibody formulations[J]. Journal of Pharmaceutical Sciences, 2019, 108(3): 1110-1116.
|