化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1102-1110.DOI: 10.11949/0438-1157.20240946
收稿日期:2024-08-22
修回日期:2024-09-12
出版日期:2025-03-25
发布日期:2025-03-28
通讯作者:
刘琳琳
作者简介:杨端康慧(2000—),女,硕士研究生,yangduankanghui@163.com.
基金资助:
Duankanghui YANG(
), Wenjin ZHOU, Linlin LIU(
)
Received:2024-08-22
Revised:2024-09-12
Online:2025-03-25
Published:2025-03-28
Contact:
Linlin LIU
摘要:
氢气是炼厂中的重要原料,采用氢网络综合的方法能够优化炼厂氢气分配以及其他相关设备的配置,在提高氢气利用率的同时降低能耗。在氢网络中压缩机费用占比较大,氢网络综合的一个重要优化目标是寻求合理的压缩机布置,节约相关费用。提出一个可同步优化氢气分配与级联压缩机布置的氢网络综合模型。该模型将压缩机划分为氢源压缩机、氢阱压缩机和流股压缩机三组,可以考虑共用以及串联压缩机的情况。此外,为了降低模型求解难度,提出合理的简化措施。案例分析表明考虑压缩机分组级联布置模型和简化模型的优化结果均明显优于常规模型,所需的压缩机数目降低,压缩机相关费用减少1.5%~2.1%,证明了所提方法的有效性。
中图分类号:
杨端康慧, 周文晋, 刘琳琳. 考虑压缩机分组级联布置的氢网络综合[J]. 化工学报, 2025, 76(3): 1102-1110.
Duankanghui YANG, Wenjin ZHOU, Linlin LIU. Synthesis of hydrogen network considering group cascade layout of compressors[J]. CIESC Journal, 2025, 76(3): 1102-1110.
| 流股 | 流量/(kmol·h-1) | 纯度/%(体积分数) | 压力/MPa |
|---|---|---|---|
| SR1 | 772.055 | 80.00 | 2.068 |
| SR2 | 2712.453 | 80.00 | 8.274 |
| SR3 | 2466.691 | 75.00 | 2.413 |
| SR4 | 1154.347 | 75.00 | 2.758 |
| SR5 | 357.138 | 70.00 | 2.413 |
| SR6 | 171.346 | 65.00 | 1.379 |
| SR7 | ≤3984.800 | 95.00 | 2.068 |
| SK1 | 4163.369 | 86.70 | 13.790 |
| SK2 | 3688.181 | 83.60 | 3.447 |
| SK3 | 1747.534 | 32.60 | 4.137 |
| SK4 | 556.527 | 74.90 | 3.447 |
| SK5 | 255.475 | 72.70 | 2.068 |
| SK6 | ≤105 | ≤100.00 | 1.379 |
表1 流股数据[34]
Table 1 The flow data[34]
| 流股 | 流量/(kmol·h-1) | 纯度/%(体积分数) | 压力/MPa |
|---|---|---|---|
| SR1 | 772.055 | 80.00 | 2.068 |
| SR2 | 2712.453 | 80.00 | 8.274 |
| SR3 | 2466.691 | 75.00 | 2.413 |
| SR4 | 1154.347 | 75.00 | 2.758 |
| SR5 | 357.138 | 70.00 | 2.413 |
| SR6 | 171.346 | 65.00 | 1.379 |
| SR7 | ≤3984.800 | 95.00 | 2.068 |
| SK1 | 4163.369 | 86.70 | 13.790 |
| SK2 | 3688.181 | 83.60 | 3.447 |
| SK3 | 1747.534 | 32.60 | 4.137 |
| SK4 | 556.527 | 74.90 | 3.447 |
| SK5 | 255.475 | 72.70 | 2.068 |
| SK6 | ≤105 | ≤100.00 | 1.379 |
| 模型 | 公用工程流量/(kmol·h-1) | 求解时间/ s | 压缩机个数/个 | 压缩机功率/kW | 压缩机设备费用/(103 USD) | 压缩机操作费用/(103 USD) | 压缩机总费用/(103 USD) |
|---|---|---|---|---|---|---|---|
| 基础模型 | 3814.425 | 1.2 | 9 | 7934.21 | 537.57 | 2085.11 | 2622.68 |
| 分组级联压缩机模型 | 3814.425 | ≥36000 | 8 | 7871.00 | 513.61 | 2068.50 | 2582.11 |
| 简化的分组级联压缩机模型 | 3814.425 | 6308.0 | 7 | 7888.02 | 492.42 | 2072.97 | 2565.40 |
表2 三种建模方法的优化效果对比
Table 2 The comparison of optimization results of three modelling approaches
| 模型 | 公用工程流量/(kmol·h-1) | 求解时间/ s | 压缩机个数/个 | 压缩机功率/kW | 压缩机设备费用/(103 USD) | 压缩机操作费用/(103 USD) | 压缩机总费用/(103 USD) |
|---|---|---|---|---|---|---|---|
| 基础模型 | 3814.425 | 1.2 | 9 | 7934.21 | 537.57 | 2085.11 | 2622.68 |
| 分组级联压缩机模型 | 3814.425 | ≥36000 | 8 | 7871.00 | 513.61 | 2068.50 | 2582.11 |
| 简化的分组级联压缩机模型 | 3814.425 | 6308.0 | 7 | 7888.02 | 492.42 | 2072.97 | 2565.40 |
| 1 | The future of hydrogen—seizing today's opportunities[R]. French: International Energy Agency, 2019. |
| 2 | Wu S D, Yu Z M, Feng X, et al. Optimization of refinery hydrogen distribution systems considering the number of compressors[J]. Energy, 2013, 62: 185-195. |
| 3 | Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769. |
| 4 | Ding Y, Feng X, Chu K H. Optimization of hydrogen distribution systems with pressure constraints[J]. Journal of Cleaner Production, 2011, 19(2/3): 204-211. |
| 5 | 梁靖靖, 刘桂莲. 考虑新氢纯度的氢网络夹点分析[J]. 化工进展, 2017, 36(3): 887-892. |
| Liang J J, Liu G L. Pinch analysis for the hydrogen network with the concentration of fresh hydrogen considered[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 887-892. | |
| 6 | Tan J X, Tan H S, Peter Affery A, et al. A P-graph approach for the synthesis of hydrogen networks with pressure and impurity constraints[J]. International Journal of Hydrogen Energy, 2021, 46(57): 29198-29215. |
| 7 | Deng C, Zhu M Q, Zhou Y H, et al. Novel conceptual methodology for hydrogen network design with minimum compression work[J]. Energy, 2018, 159: 203-215. |
| 8 | Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98. |
| 9 | Liu F, Zhang N. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research and Design, 2004, 82(10): 1315-1330. |
| 10 | 梁肖强, 刘永忠, 张亮. 集中式提纯器的设置与具有中间等级氢气网络的优化[J]. 化工进展, 2014, 33(3): 577-582. |
| Liang X Q, Liu Y Z, Zhang L. Installation of a centralized purifier and optimization of hydrogen network with intermediate levels[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 577-582. | |
| 11 | 邓春, 周业扬, 陈杰, 等. 石化园区厂际提纯回用氢气系统优化[J]. 化工学报, 2014, 65(12): 4914-4920. |
| Deng C, Zhou Y Y, Chen J, et al. Optimization of inter-plant hydrogen system with purification reuse in petrochemical complex[J]. CIESC Journal, 2014, 65(12): 4914-4920. | |
| 12 | 刘桂莲, 王颖佳. 考虑提纯能耗的氢网络提纯优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 717-722. |
| Liu G L, Wang Y J. Optimization of a hydrogen network with consideration of the energy consumption for purification[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(7): 717-722. | |
| 13 | 李开宇, 刘桂莲. 储氢提纯和氢网络的耦合优化[J]. 化工学报, 2020, 71(3): 1143-1153. |
| Li K Y, Liu G L. Coupling optimization of hydrogen-storage based purification and hydrogen network[J]. CIESC Journal, 2020, 71(3): 1143-1153. | |
| 14 | 吴依凡, 夏志鹏, 吉旭, 等. 基于代理模型的炼厂氢网络与脱硫系统同步优化[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 176-187. |
| Wu Y F, Xia Z P, Ji X, et al. Surrogate-assisted refinery hydrogen network optimization with hydrogen sulfide removal[J]. Journal of East China University of Science and Technology, 2023, 49(2): 176-187. | |
| 15 | 黄灵军, 李伟, 王颖佳, 等. 考虑多对耦合源阱的氢网络优化方法及其应用[J]. 化工学报, 2018, 69(3): 1038-1045. |
| Huang L J, Li W, Wang Y J, et al. Optimization method for hydrogen network integration considering coupled sinks and its application[J]. CIESC Journal, 2018, 69(3): 1038-1045. | |
| 16 | 周凌子, 邓春, 冯霄. 加氢裂化装置氢源氢阱关联模型[J]. 计算机与应用化学, 2017, 34(1): 69-74. |
| Zhou L Z, Deng C, Feng X. Correlation model between hydrogen source and hydrogen sink of hydrocracking unit[J]. Computers and Applied Chemistry, 2017, 34(1): 69-74. | |
| 17 | Chen S Z, Shen F F, Zhong W M, et al. Synchronous adjustment framework for the integrated hydrogen network and production system: a concurrent optimization strategy of the system based on multi-model ensemble method[J]. Applied Energy, 2024, 360: 122636. |
| 18 | 潘怀民, 邓春, 李伟, 等. 具有压力约束的多杂质氢气分配网络优化[J]. 计算机与应用化学, 2013, 30(11): 1273-1277. |
| Pan H M, Deng C, Li W, et al. Optimization of hydrogen distribution network with multiple impurities and pressure constraints[J]. Computers and Applied Chemistry, 2013, 30(11): 1273-1277. | |
| 19 | 邓春, 李伟, 潘怀民, 等. 多杂质氢气分配网络优化[J]. 华东理工大学学报(自然科学版), 2014, 40(4): 458-464. |
| Deng C, Li W, Pan H M, et al. Optimization of hydrogen distribution network with multiple impurities[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2014, 40(4): 458-464. | |
| 20 | Jia X X, Liu G L. Optimization of hydrogen networks with multiple impurities and impurity removal[J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1236-1242. |
| 21 | 周业扬, 邓春, 周凌子, 等. 多工况氢网络压缩机配置和运行优化[J]. 化工学报, 2017, 68(5): 1954-1960. |
| Zhou Y Y, Deng C, Zhou L Z, et al. Deployment and operation optimization of compressors in multi-scenario hydrogen network[J]. CIESC Journal, 2017, 68(5): 1954-1960. | |
| 22 | 黄志鸿, 周利, 柴士阳, 等. 耦合加氢装置优化的多周期氢网络集成[J]. 化工学报, 2024, 75(5): 1951-1965. |
| Huang Z H, Zhou L, Chai S Y, et al. Integrating optimization of hydrogenation units in multi-period hydrogen network[J]. CIESC Journal, 2024, 75(5): 1951-1965. | |
| 23 | da Silva P R, Aragão M E, Trierweiler J O, et al. Integration of hydrogen network design to the production planning in refineries based on multi-scenarios optimization and flexibility analysis[J]. Chemical Engineering Research and Design, 2022, 187: 434-450. |
| 24 | 宣吉, 廖祖维, 荣冈, 等. 基于随机规划的炼厂氢网络改造设计[J]. 化工学报, 2010, 61(2): 398-404. |
| Xuan J, Liao Z W, Rong G, et al. Hydrogen network retrofit design in refinery based on stochastic programming[J]. CIESC Journal, 2010, 61(2): 398-404. | |
| 25 | 张欣, 周利, 王诗慧, 等. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646. |
| Zhang X, Zhou L, Wang S H, et al. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations[J]. CIESC Journal, 2022, 73(4): 1631-1646. | |
| 26 | Shen Y D, Lou Y Q, Ren C J, et al. Risk management for hydrogen networks across refineries[J]. International Journal of Hydrogen Energy, 2022, 47(2): 848-861. |
| 27 | Jagannath A, Almansoori A. A mathematical model for optimal compression costs in the hydrogen networks for the petroleum refineries[J]. AIChE Journal, 2017, 63(9): 3925-3943. |
| 28 | Chang C L, Lin Q C, Liao Z W, et al. Globally optimal design of refinery hydrogen networks with pressure discretization[J]. Chemical Engineering Science, 2022, 247: 117021. |
| 29 | Huang L J, Li D, Li N, et al. A novel mathematical model for integrating the hydrogen network of refinery with compressor allocation considered[J]. International Journal of Hydrogen Energy, 2022, 47(41): 18067-18079. |
| 30 | Zhou Y Q, Yu H S, Feng X, et al. Optimal design of refinery hydrogen networks: reduced superstructure and effective algorithm[J]. Industrial & Engineering Chemistry Research, 2022, 61(46): 17114-17123. |
| 31 | Chang C L. A mathematical model for refinery hydrogen network synthesis integrating multi-stage compressors[J]. International Journal of Hydrogen Energy, 2022, 47(89): 37677-37693. |
| 32 | 周迎千, 冯霄, 杨敏博. 基于压缩机选型的炼厂氢网络集成[J]. 清华大学学报(自然科学版), 2023, 63(5): 723-729. |
| Zhou Y Q, Feng X, Yang M B. Synthesis of refinery hydrogen networks considering compressor types[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(5): 723-729. | |
| 33 | Zhou Y Q, Wang Y F, Feng X, et al. Synthesis of refinery hydrogen network considering compressor selection and interstage suction/discharge[J]. International Journal of Hydrogen Energy, 2023, 48(91): 35419-35432. |
| 34 | Elkamel A, Alhajri I, Almansoori A, et al. Integration of hydrogen management in refinery planning with rigorous process models and product quality specifications[J]. International Journal of Process Systems Engineering, 2011, 1(3/4): 302. |
| 35 | 魏传江, 王浩, 谢新民, 等. GAMS用户指南[M]. 北京: 中国水利水电出版社, 2009. |
| Wei C J, Wang H, Xie X M, et al. GAMS User Guide[M]. Beijing: China Water & Power Press, 2009. |
| [1] | 杨猛, 丁晓倩, 余涛, 刘畅, 汤成龙, 黄佐华. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| [2] | 陈仲卿, 刘家旭, 王艳语, 井红权, 侯翠红, 屈凌波. K-B-Al体系对磷矿熔融特性及玻璃结构的影响[J]. 化工学报, 2025, 76(3): 1323-1333. |
| [3] | 殷梦凡, 王倩, 郑涛, 姬奎, 王绍贵, 郭辉, 林志强, 张睿, 孙晖, 刘海燕, 刘植昌, 徐春明, 孟祥海, 王月平. 可再生能源电解水制氢-低温低压合成氨万吨级工业示范流程设计[J]. 化工学报, 2025, 76(2): 825-834. |
| [4] | 杨晔, 卢建刚. 基于融合Transformer的门尼系数预测建模研究[J]. 化工学报, 2025, 76(1): 266-282. |
| [5] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
| [6] | 李雨诗, 陈源, 李运堂, 彭旭东, 王冰清, 李孝禄. 新型柔性坝箔片端面气膜密封变形协调分析及性能智能优化[J]. 化工学报, 2025, 76(1): 324-334. |
| [7] | 李海东, 张奇琪, 杨路, AKRAM Naeem, 常承林, 莫文龙, 申威峰. 采用智能进化算法的管壳式换热器详细设计[J]. 化工学报, 2025, 76(1): 241-255. |
| [8] | 张俊杰, 陈源, 李运堂, 李孝禄, 王冰清, 彭旭东. 超椭圆织构浮动坝箔片端面气膜密封动态性能分析与优化[J]. 化工学报, 2025, 76(1): 296-310. |
| [9] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
| [10] | 黄志鸿, 周利, 柴士阳, 吉旭. 耦合加氢装置优化的多周期氢网络集成[J]. 化工学报, 2024, 75(5): 1951-1965. |
| [11] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
| [12] | 李文俊, 赵中阳, 倪震, 周灿, 郑成航, 高翔. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519. |
| [13] | 郑群, 陈培强, 王长富, 熊春华, 徐万里, 阮曼. 海水激活电池电解液流动特性分析[J]. 化工学报, 2024, 75(12): 4770-4779. |
| [14] | 郭磊磊, 吴震, 杨福胜, 张早校. 基于流通式金属氢化物反应器的氢高效分离提纯实验研究[J]. 化工学报, 2024, 75(12): 4576-4586. |
| [15] | 弓志超, 李双喜, 李方俊, 黄泽盛, 肖可应. 开启式艉轴唇形密封结构参数多目标优化及性能分析[J]. 化工学报, 2024, 75(12): 4689-4701. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号