化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4770-4779.DOI: 10.11949/0438-1157.20240343
郑群1(), 陈培强1,2, 王长富2(
), 熊春华2, 徐万里2, 阮曼2
收稿日期:
2024-03-27
修回日期:
2024-08-11
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
王长富
作者简介:
郑群(1962—),男,博士,教授,zhengqun@hrbeu.edu.cn
Qun ZHENG1(), Peiqiang CHEN1,2, Changfu WANG2(
), Chunhua XIONG2, Wanli XU2, Man RUAN2
Received:
2024-03-27
Revised:
2024-08-11
Online:
2024-12-25
Published:
2025-01-03
Contact:
Changfu WANG
摘要:
针对海水激活电池极板间电解液分布不均及电解液流量适配问题,提出一种新型仿生鹿角型流道结构,利用正交设计及计算流体力学(computational fluid dynamics, CFD)方法,研究多因素交互作用下海水激活电池内部电解液的流动特性,并对电解液流道优化进行研究。结果表明:对电解液流动特性影响最大的是流道数目,其次是电解液流量和流道偏转角;流道数目、电解液流量和流道偏转角的最佳匹配值分别是12个、200 ml/min和20°;对流道结构进行优化后,明显提升了极板间电解液的分布均匀性,调峰效率达到36.2%。研究结果能够为海水激活电池流道结构优化设计提供参考价值。
中图分类号:
郑群, 陈培强, 王长富, 熊春华, 徐万里, 阮曼. 海水激活电池电解液流动特性分析[J]. 化工学报, 2024, 75(12): 4770-4779.
Qun ZHENG, Peiqiang CHEN, Changfu WANG, Chunhua XIONG, Wanli XU, Man RUAN. Electrolyte flow characteristics of seawater activated battery[J]. CIESC Journal, 2024, 75(12): 4770-4779.
参数 | 数值 |
---|---|
密度/(kg/m3) | 1250 |
比热容/(J/(kg·K)) | 4182 |
动力黏性系数/(kg/(m·s)) | 0.0025 |
表1 电解液物性参数
Table 1 Physical parameters of electrolyte
参数 | 数值 |
---|---|
密度/(kg/m3) | 1250 |
比热容/(J/(kg·K)) | 4182 |
动力黏性系数/(kg/(m·s)) | 0.0025 |
参数 | 实验结果 | 模拟结果 | 相对误差 |
---|---|---|---|
Δp/kPa | 6.015 | 5.606 | 6.80% |
t/s | 2.25 | 2.2 | 2.22% |
表2 数值计算及实验结果对比
Table 2 Comparison between numerical and experimental results
参数 | 实验结果 | 模拟结果 | 相对误差 |
---|---|---|---|
Δp/kPa | 6.015 | 5.606 | 6.80% |
t/s | 2.25 | 2.2 | 2.22% |
序号 | A | B/(°) | C/(ml/min) | VR |
---|---|---|---|---|
1 | 6 | 20 | 100 | 2.508 |
2 | 6 | 30 | 250 | 2.923 |
3 | 6 | 40 | 150 | 2.674 |
4 | 6 | 50 | 300 | 3.037 |
5 | 6 | 60 | 200 | 2.789 |
6 | 8 | 20 | 200 | 1.836 |
7 | 8 | 30 | 100 | 2.008 |
8 | 8 | 40 | 250 | 2.318 |
9 | 8 | 50 | 150 | 2.108 |
10 | 8 | 60 | 300 | 2.359 |
11 | 10 | 20 | 300 | 1.895 |
12 | 10 | 30 | 200 | 1.778 |
13 | 10 | 40 | 100 | 1.605 |
14 | 10 | 50 | 250 | 1.839 |
15 | 10 | 60 | 150 | 1.705 |
16 | 12 | 20 | 150 | 1.433 |
17 | 12 | 30 | 300 | 1.624 |
18 | 12 | 40 | 200 | 1.513 |
19 | 12 | 50 | 100 | 1.373 |
20 | 12 | 60 | 250 | 1.526 |
21 | 14 | 20 | 250 | 1.363 |
22 | 14 | 30 | 150 | 1.227 |
23 | 14 | 40 | 300 | 1.397 |
24 | 14 | 50 | 200 | 1.309 |
25 | 14 | 60 | 100 | 1.194 |
平均值1 | 2.7862 | 1.807 | 1.7376 | — |
平均值2 | 2.1258 | 1.912 | 1.8294 | — |
平均值3 | 1.7644 | 1.9014 | 1.845 | — |
平均值4 | 1.4938 | 1.9332 | 1.9938 | — |
平均值5 | 1.298 | 1.9146 | 2.0624 | — |
R | 1.4882 | 0.1262 | 0.3248 | — |
表3 正交设计及数值结果
Table 3 Orthogonal design and numerical results
序号 | A | B/(°) | C/(ml/min) | VR |
---|---|---|---|---|
1 | 6 | 20 | 100 | 2.508 |
2 | 6 | 30 | 250 | 2.923 |
3 | 6 | 40 | 150 | 2.674 |
4 | 6 | 50 | 300 | 3.037 |
5 | 6 | 60 | 200 | 2.789 |
6 | 8 | 20 | 200 | 1.836 |
7 | 8 | 30 | 100 | 2.008 |
8 | 8 | 40 | 250 | 2.318 |
9 | 8 | 50 | 150 | 2.108 |
10 | 8 | 60 | 300 | 2.359 |
11 | 10 | 20 | 300 | 1.895 |
12 | 10 | 30 | 200 | 1.778 |
13 | 10 | 40 | 100 | 1.605 |
14 | 10 | 50 | 250 | 1.839 |
15 | 10 | 60 | 150 | 1.705 |
16 | 12 | 20 | 150 | 1.433 |
17 | 12 | 30 | 300 | 1.624 |
18 | 12 | 40 | 200 | 1.513 |
19 | 12 | 50 | 100 | 1.373 |
20 | 12 | 60 | 250 | 1.526 |
21 | 14 | 20 | 250 | 1.363 |
22 | 14 | 30 | 150 | 1.227 |
23 | 14 | 40 | 300 | 1.397 |
24 | 14 | 50 | 200 | 1.309 |
25 | 14 | 60 | 100 | 1.194 |
平均值1 | 2.7862 | 1.807 | 1.7376 | — |
平均值2 | 2.1258 | 1.912 | 1.8294 | — |
平均值3 | 1.7644 | 1.9014 | 1.845 | — |
平均值4 | 1.4938 | 1.9332 | 1.9938 | — |
平均值5 | 1.298 | 1.9146 | 2.0624 | — |
R | 1.4882 | 0.1262 | 0.3248 | — |
1 | Li Q F, Bjerrum N J. Aluminum as anode for energy storage and conversion: a review[J]. Journal of Power Sources, 2002, 110(1): 1-10. |
2 | Moghanni-Bavil-Olyaei H, Arjomandi J. Performance of Al-1Mg-1Zn-0.1Bi-0.02In as anode for the Al-AgO battery[J]. RSC Advances, 2015, 111(5): 91273-91279. |
3 | Gonzalez-Guerrero M J, Gomez F A. Miniaturized Al/AgO coin shape and self-powered battery featuring painted paper electrodes for portable applications[J]. Sensors and Actuators B: Chemical, 2018, 273(10): 101-107. |
4 | 刘勇, 石治国, 王传东. 水下无人平台用电源的发展现状[J]. 电源技术, 2016, 40(9): 1903-1904. |
Liu Y, Shi Z G, Wang C D. Development of power for unmanned underwater vehicles[J]. Chinese Journal of Power Sources, 2016, 40(9): 1903-1904. | |
5 | Huang G S, Zhao Y C, Wang Y X, et al. Performance of Mg–air battery based on AZ31 alloy sheet with twins[J]. Materials Letters, 2013, 113: 46-49. |
6 | Zhang P J, Liu X, Xue J L, et al. The role of microstructural evolution in improving energy conversion of Al-based anodes for metal-air batteries[J]. Journal of Power Sources, 2020, 451: 227806. |
7 | Xie Q Y, Ma A B, Jiang J H, et al. Discharge properties of ECAP processed AZ31-Ca alloys as anodes for seawater-activated battery[J]. Journal of Materials Research and Technology, 2021, 11: 1031-1044. |
8 | Xiong H Q, Yu K, Yin X, et al. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery[J]. Journal of Alloys and Compounds, 2017, 708: 652-661. |
9 | Wu Z B, Zhang H T, Zou J, et al. Enhancement of the discharge performance of Al-0.5Mg-0.1Sn-0.05Ga (wt.%) anode for Al-air battery by directional solidification technique and subsequent rolling process[J]. Journal of Alloys and Compounds, 2020, 827: 154272. |
10 | Ghasabehi M, Shams M, Kanani H. Multi-objective optimization of operating conditions of an enhanced parallel flow field proton exchange membrane fuel cell[J]. Energy Conversion and Management, 2021, 230: 113798. |
11 | Yue M, Yan J W, Zhang H M, et al. The crucial role of parallel and interdigitated flow channels in a trapezoid flow battery[J]. Journal of Power Sources, 2021, 512: 230497. |
12 | Gundlapalli R, Jayanti S. Performance characteristics of several variants of interdigitated flow fields for flow battery applications[J]. Journal of Power Sources, 2020, 467: 228225. |
13 | Zhou T H, Liu Z Y, Yuan S W, et al. Machine-learning assisted analysis on coupled fluid-dynamics and electrochemical processes in interdigitated channel for iron-chromium flow batteries[J]. Chemical Engineering Journal, 2024, 496: 153904. |
14 | Ghanbarian A, Kermani M J, Scholta J, et al. Polymer electrolyte membrane fuel cell flow field design criteria—application to parallel serpentine flow patterns[J]. Energy Conversion and Management, 2018, 166: 281-296. |
15 | Sharma H, Kumar M. Enhancing power density of a vanadium redox flow battery using modified serpentine channels[J]. Journal of Power Sources, 2021, 494: 229753. |
16 | Chadha K, Martemianov S, Thomas A. Study of new flow field geometries to enhance water redistribution and pressure head losses reduction within PEM fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(10): 7489-7501. |
17 | Chai Y W, Qu D W, Fan L Y, et al. A double-spiral flow channel of vanadium redox flow batteries for enhancing mass transfer and reducing pressure drop[J]. Journal of Energy Storage, 2024, 78: 110278. |
18 | Chen T, Xiao Y, Chen T Z. The impact on PEMFC of bionic flow field with a different branch[J]. Energy Procedia, 2012, 28: 134-139. |
19 | Xiong X, Wang Z H, Fan Y W, et al. Numerical analysis of cylindrical lithium-ion battery thermal management system based on bionic flow channel structure[J]. Thermal Science and Engineering Progress, 2023, 42: 101879. |
20 | Zheng Q, Xing F, Li X F, et al. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery[J]. Journal of Power Sources, 2016, 324: 402-411. |
21 | Ke X Y, Alexander J I D, Prahl J M, et al. Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel[J]. Journal of Power Sources, 2014, 270: 646-657. |
22 | Ke X Y, Prahl J M, Alexander J I D, et al. Redox flow batteries with serpentine flow fields: distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance[J]. Journal of Power Sources, 2018, 384: 295-302. |
23 | Sun J, Zheng M L, Yang Z S, et al. Flow field design pathways from lab-scale toward large-scale flow batteries[J]. Energy, 2019, 173: 637-646. |
24 | 王升贵, 袁思鸣, 王海清, 等. 一次电池快速激活带载应用研究[J]. 电源技术, 2021, 45(7): 925-927. |
Wang S G, Yuan S M, Wang H Q, et al. Application research of primary battery rapid activation load operation[J]. Chinese Journal of Power Sources, 2021, 45(7): 925-927. | |
25 | Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
26 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
27 | Zhao W K, Wang L J, Zhang Y N, et al. Snow melting on a road unit as affected by thermal fluids in different embedded pipes[J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101221. |
28 | Zhao W K, Zhang Y N, Cao X Y, et al. Applied thermal process for a hydronic snow-melting system in the coldest provincial capital of China[J]. Applied Thermal Engineering, 2023, 218: 119421. |
29 | Chen P Q, Zheng Q. Investigation on flow field optimization of seawater activated battery based on flow channel structure design[J]. Journal of Energy Storage, 2024, 84: 110798. |
30 | 吕颂, 吴法勇, 王洪斌, 等. 涡轮叶片冷却效果影响因素交互效应分析与试验研究[J]. 推进技术, 2022, 43(5): 278-289. |
Lyu S, Wu F Y, Wang H B, et al. Analysis and experimental research on interaction effect of influencing factors of turbine blade cooling effectiveness[J]. Journal of Propulsion Technology, 2022, 43(5): 278-289. | |
31 | 涂敏, 汤广发, 任承钦, 等. 溶液除湿系统中除湿塔的参数分析[J]. 化工学报, 2010, 61(10): 2546-2551. |
Tu M, Tang G F, Ren C Q, et al. Analysis on parameters of dehumidification tower in liquid desiccant dehumidification systems[J]. CIESC Journal, 2010, 61(10): 2546-2551. |
[1] | 陈森洋, 靳蒲航, 谭志明, 谢公南. 质子交换膜燃料电池中蛇形流道液滴运动数值仿真研究[J]. 化工学报, 2024, 75(S1): 183-194. |
[2] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[3] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[4] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[5] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[6] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[7] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[8] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[9] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[10] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[11] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[12] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
[13] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[14] | 左磊, 王军锋, 高健, 王道睿. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990. |
[15] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||