| [1] |
Xin S, You Y, Wang S F, et al. Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects[J]. ACS Energy Letters, 2017, 2(6): 1385-1394.
|
| [2] |
Zhuang Z C, Li Y H, Yu R H, et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes[J]. Nature Catalysis, 2022, 5(4): 300-310.
|
| [3] |
Liu D Z, Du D Y, Yu R H, et al. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation[J]. Angewandte Chemie International Edition, 2023, 62(3): e202212653.
|
| [4] |
Xiao W, Wang J Y, Fan L L, et al. Recent advances in Li1+ x Al x Ti2- x (PO4)3 solid-state electrolyte for safe lithium batteries[J]. Energy Storage Materials, 2019, 19: 379-400.
|
| [5] |
Chen F, Yang D J, Zha W P, et al. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries[J]. Electrochimica Acta, 2017, 258: 1106-1114.
|
| [6] |
Zhang P, Wang H, Lee Y G, et al. Tape-cast water-stable NASICON-type high lithium ion conducting solid electrolyte films for aqueous lithium-air batteries[J]. Journal of the Electrochemical Society, 2015, 162(7): A1265-A1271.
|
| [7] |
Li X, Guan Q H, Zhuang Z C, et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery[J]. ACS Nano, 2023, 17(2): 1653-1662.
|
| [8] |
张冠华, 杨子涵, 马越. 混合工艺对氧化物/硫化物复合固态电解质电化学性能的影响[J]. 化学学报, 2023, 81(10): 1387-1393.
|
|
Zhang G H, Yang Z H, Ma Y. Effect of mixing strategy on electrochemical performance of oxide/sulfide solid electrolyte[J]. Acta Chimica Sinica, 2023, 81(10): 1387-1393.
|
| [9] |
Wu X M, Li R X, Chen S, et al. Synthesis and characterization of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 by wet chemical route[J]. Rare Metals, 2009, 28(2): 122-126.
|
| [10] |
Xu H Y, Fei G T, Xu S H, et al. Functional modification of polypropylene separators with solid electrolyte LATP and SiO2 coatings for lithium batteries[J]. Solid State Ionics, 2024, 412: 116603.
|
| [11] |
Kibret D Y, Mengesha T H, Walle K Z, et al. Resolving electrochemical incompatibility between LATP and Li-metal using tri-layer composite solid electrolyte approaches for solid-state Li-metal batteries[J]. Journal of Energy Storage, 2024, 94: 112523.
|
| [12] |
Lee S D, Jung D K, Kim H, et al. Composite electrolyte for all-solid-state lithium batteries: low-temperature fabrication and conductivity enhancement[J]. ChemSusChem, 2017, 10(10): 2175-2181.
|
| [13] |
Xu P, Shuang Z Y, Zhao C Z, et al. A review of solid-state lithium metal batteries through in situ solidification[J]. Science China Chemistry, 2024, 67(1): 67-86.
|
| [14] |
Fan P, Liu H, Marosz V, et al. High performance composite polymer electrolytes for lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(23): 2101380.
|
| [15] |
Liang J Y, Zeng X X, Zhang X D, et al. Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries[J]. Journal of the American Chemical Society, 2019, 141(23): 9165-9169.
|
| [16] |
Han X G, Gong Y H, Fu K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579.
|
| [17] |
Xia Q, Yuan S G, Zhang Q, et al. Designing the interface layer of solid electrolytes for all-solid-state lithium batteries[J]. Advanced Science, 2024, 11(29): 2401453.
|
| [18] |
Hosseini S M, Safarifard V. A novel PVDF film containing g-C3N4@MOF composite for efficient photoreduction of Cr(Ⅵ) under visible light[J]. Surfaces and Interfaces, 2024, 55: 105399.
|
| [19] |
Prasad S, Chouhan H, Parida B N, et al. Enhanced optical, dielectric and transport properties in PVDF based (La0.5Bi0.5FeO3)0.5-(BaTiO3)0.5 composites[J]. Inorganic Chemistry Communications, 2024, 170: 113486.
|
| [20] |
Acarer-Arat S, Tüfekci M, Pir İ, et al. Nanocellulose in polyvinylidene fluoride (PVDF) membranes: assessing reinforcement impact and modelling techniques[J]. Journal of Environmental Chemical Engineering, 2024, 12(6): 114749.
|
| [21] |
Xia Y H, Gui Y Y, Zhou J H, et al. Super alkali-resistant PVDF membranes modified by coating and grafting with self-healing ability operate efficiently in the treatment of dye/water under pHs[J]. Journal of Water Process Engineering, 2024, 68: 106466.
|
| [22] |
Chen J, Zhao J Y, Lin L, et al. Quasi-spherical PVDF ultrasonic transducer with double-cylindrical PVDF structure[J]. IEEE Sensors Journal, 2020, 20(1): 113-120.
|
| [23] |
Periasamy P, Tatsumi K, Shikano M, et al. Studies on PVDF-based gel polymer electrolytes[J]. Journal of Power Sources, 2000, 88(2): 269-273.
|
| [24] |
Zhang X, Liu T, Zhang S F, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785.
|
| [25] |
Dietrich C, Weber D A, Culver S, et al. Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6 [J]. Inorganic Chemistry, 2017, 56(11): 6681-6687.
|
| [26] |
Wang X X, Chi X W, Li M L, et al. An integrated solid-state lithium-oxygen battery with highly stable anionic covalent organic frameworks electrolyte[J]. Chem, 2023, 9(2): 394-410.
|
| [27] |
Chen Y, Zhang Y, Niu J D, et al. Poly(ether-ester)-based solid polymer electrolytes with high Li-ion transference number for high voltage all-solid-state lithium metal batteries[J]. ACS Applied Energy Materials, 2023, 6(5): 3113-3125.
|
| [28] |
Liang X H, Jiang X T, Lan L X, et al. Preparation and study of a simple three-matrix solid electrolyte membrane in air[J]. Nanomaterials, 2022, 12(17): 3069.
|
| [29] |
Jackman S D, Cutler R A. Effect of microcracking on ionic conductivity in LATP[J]. Journal of Power Sources, 2012, 218: 65-72.
|
| [30] |
Jiang G S, Qu C Z, Xu F, et al. Glassy metal-organic-framework-based quasi-solid-state electrolyte for high-performance lithium-metal batteries[J]. Advanced Functional Materials, 2021, 31(43): 2104300.
|