化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2983-2994.DOI: 10.11949/0438-1157.20241261
收稿日期:2024-11-08
修回日期:2024-12-31
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
范晶
作者简介:宋粉红(1983—),女,博士,教授,fenhongsong@neepu.edu.cn
基金资助:
Fenhong SONG(
), Wenguang WANG, Liang GUO, Jing FAN(
)
Received:2024-11-08
Revised:2024-12-31
Online:2025-06-25
Published:2025-07-09
Contact:
Jing FAN
摘要:
光催化剂的光吸收范围窄以及光生电子-空穴对的快速复合是影响光催化制氢性能的重要因素,通过掺杂改性可有效改善其催化性能。利用热缩合和煅烧法制备出C/g-C3N4-TiO2复合材料,C修饰g-C3N4不仅调控了TiO2的能带结构,还显著增强了TiO2对可见光的吸收能力。进一步探究了不同C/g-C3N4含量的C/g-C3N4-TiO2分解水制氢的光催化性能。实验结果表明,C/g-C3N4的引入显著增强了TiO2在可见光区域的吸收能力,并拓宽了其光响应范围。当C/g-C3N4-TiO2质量比为0.10时,三元复合物的产氢速率最高[4.66 mmol/(g·h)],是TiO2的2.31倍,是C/g-C3N4的7.17倍,且经过七次循环后,仍具有较好的稳定性。这主要得益于C/g-C3N4与TiO2之间的协同作用,有效促进了光生载流子的分离和传输,减少了电子-空穴对的复合,从而提高了光催化产氢效率。因此,通过合理设计和优化光催化剂的复合结构,可以显著提升其在水分解制氢过程中的性能,为高效光催化剂的开发提供新的思路和方向。
中图分类号:
宋粉红, 王文光, 郭亮, 范晶. C元素修饰g-C3N4对TiO2的调控及复合材料光催化产氢性能研究[J]. 化工学报, 2025, 76(6): 2983-2994.
Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites[J]. CIESC Journal, 2025, 76(6): 2983-2994.
| 样品 | 比表面积/(m2/g) | 孔径/nm |
|---|---|---|
| CCN0.1 | 36.0032 | 19.9325 |
| TiO2 | 81.1675 | 13.7842 |
| 0.10CCN0.1-TiO2 | 64.7460 | 16.4268 |
表1 样品的表面结构性质
Table 1 Surface structural properties of the samples
| 样品 | 比表面积/(m2/g) | 孔径/nm |
|---|---|---|
| CCN0.1 | 36.0032 | 19.9325 |
| TiO2 | 81.1675 | 13.7842 |
| 0.10CCN0.1-TiO2 | 64.7460 | 16.4268 |
| [1] | 席佳铭, 孙亮, 葛沛然, 等. 考虑电热需求响应的光热-电热综合能源系统源荷协调经济调度[J]. 东北电力大学学报, 2023, 43(3): 61-71. |
| Xi J M, Sun L, Ge P R, et al. Source-charge coordinated economic dispatching of photothermal-electrothermal integrated energy system considering electric heating demand response[J]. Journal of Northeast Electric Power University, 2023, 43(3): 61-71. | |
| [2] | Densing M, Wan Y. Low-dimensional scenario generation method of solar and wind availability for representative days in energy modeling[J]. Applied Energy, 2022, 306: 118075. |
| [3] | 李娟, 王玲, 孙康杰, 等. 考虑风电不确定性和有功无功联合调整的两阶段优化调度[J]. 东北电力大学学报, 2023, 43(3): 72-81. |
| Li J, Wang L, Sun K J, et al. Two-stage optimal dispatch considering uncertainty of wind power and joint regulaiton of active and reactive power[J]. Journal of Northeast Electric Power University, 2023, 43(3): 72-81. | |
| [4] | Zhang B, Zhang S X, Yao R, et al. Progress and prospects of hydrogen production: opportunities and challenges[J]. Journal of Electronic Science and Technology, 2021, 19(2): 100080. |
| [5] | 曾煜轩, 冀爽, 王金鑫. 计及制氢效率变化与氢能绿证的综合能源系统优化调度[J]. 东北电力大学学报, 2024, 44(1): 25-33. |
| Zeng Y X, Ji S, Wang J X. Optimization dispatch of integrated energy systems considering hydrogen production efficiency variation and hydrogen energy green certificate[J]. Journal of Northeast Electric Power University, 2024, 44(1): 25-33. | |
| [6] | Bae S Y, Mahmood J, Jeon I Y, et al. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction[J]. Nanoscale Horizons, 2020, 5(1): 43-56. |
| [7] | Zhang H T, Sun Z X, Hu Y H. Steam reforming of methane: current states of catalyst design and process upgrading[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111330. |
| [8] | Zhang J X, Zhong J F, Yang L, et al. Enhancement effect of semicoke waste heat on energy conservation and hydrogen production from biomass gasification[J]. Renewable Energy, 2024, 236: 121340. |
| [9] | 方书起, 王毓谦, 李攀, 等. 生物油催化重整制氢研究进展[J]. 化工进展, 2022, 41(3): 1330-1339. |
| Fang S Q, Wang Y Q, Li P, et al. Research progress of hydrogen production by catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1330-1339. | |
| [10] | Wu X H, Chen G Q, Wang J, et al. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution[J]. Acta Physico Chimica Sinica, 2023, 39(6): 2212016. |
| [11] | 徐振和, 李泓江, 高雨, 等. In2O3/Ag: ZnIn2S4 “Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635. |
| Xu Z H, Li H J, Gao Y, et al. Preparation of In2O3/Ag: ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis[J]. CIESC Journal, 2022, 73(8): 3625-3635. | |
| [12] | 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520. |
| Li L R, Peng J, Fu B, et al. Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 508-520. | |
| [13] | An P, Zhang Q H, Yang Z, et al. Research progress of solar hydrogen production technology under double carbon target[J]. Acta Chimica Sinica, 2022, 80(12): 1629. |
| [14] | Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
| [15] | Ansari F, Sheibani S, Fernández-García M. A response surface methodology optimization for efficient photocatalytic degradation over reusable Cu x O/TiO2 nanocomposite on copper wire[J]. Materials Research Bulletin, 2023, 166: 112342. |
| [16] | Yuan S J, Dai L H, Xie M F, et al. Modification optimization and application of graphitic carbon nitride in photocatalysis: current progress and future prospects[J]. Chemical Engineering Science, 2024, 296: 120245. |
| [17] | Yang J J, Wang H, Jiang L B, et al. Defective polymeric carbon nitride: fabrications, photocatalytic applications and perspectives[J]. Chemical Engineering Journal, 2022, 427: 130991. |
| [18] | 陈克龙, 黄建花. g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢[J]. 化工学报, 2020, 71(1): 397-408. |
| Chen K L, Huang J H. g-C3N4-CdS-NiS2 composite nanotube: synthesis and its photocatalytic activity for H2 generation under visible light[J]. CIESC Journal, 2020, 71(1): 397-408. | |
| [19] | Tuntithavornwat S, Saisawang C, Ratvijitvech T, et al. Recent development of black TiO2 nanoparticles for photocatalytic H2 production: an extensive review[J]. International Journal of Hydrogen Energy, 2024, 55: 1559-1593. |
| [20] | 李勇, 高佳琦, 杜超, 等. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458. |
| Li Y, Gao J Q, Du C, et al. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation[J]. CIESC Journal, 2023, 74(6): 2458. | |
| [21] | Li M, Zhang R Y, Zou Z P, et al. Optimizing physico-chemical properties of hierarchical ZnO/TiO2 nano-film by the novel heating method for photocatalytic degradation of antibiotics and dye[J]. Chemosphere, 2024, 346: 140392. |
| [22] | Ning X F, Lu G X. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting[J]. Nanoscale, 2020, 12(3): 1213-1223. |
| [23] | Kim J, Nguyen T N, Yoo H. Fabrication and photocatalytic activity of reduced dendritic fibrous nanotitania[J]. Applied Surface Science, 2024, 654: 159446. |
| [24] | Rashid R, Shafiq I, Gilani M R H S, et al. Advancements in TiO2-based photocatalysis for environmental remediation: strategies for enhancing visible-light-driven activity[J]. Chemosphere, 2024, 349: 140703. |
| [25] | Ahmadpour N, Nowrouzi M, Madadi Avargani V, et al. Design and optimization of TiO2-based photocatalysts for efficient removal of pharmaceutical pollutants in water: recent developments and challenges[J]. Journal of Water Process Engineering, 2024, 57: 104597. |
| [26] | Zhang X Q, Zhang W N, Xu Y M, et al. Defective titanium dioxide-supported ultrasmall Au clusters for photocatalytic hydrogen production[J]. Frontiers in Physics, 2020, 8: 616349. |
| [27] | Wu C, Liu K L, Li Y K, et al. Dual-modified hollow spherical shell MoS2@TiO2/TiN composites for photocatalytic hydrogen production[J]. Energy Technology, 2022, 10(1): 2100265. |
| [28] | Alcudia-Ramos M A, Fuentez-Torres M O, Ortiz-Chi F, et al. Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production[J]. Ceramics International, 2020, 46(1): 38-45. |
| [29] | Liu E L, Lin X, Hong Y Z, et al. Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution[J]. Renewable Energy, 2021, 178: 757-765. |
| [30] | 薛淑滢, 冯嫄淼, 张丽莉, 等. C掺杂g-C3N4/PVDF纳米纤维膜的制备及其可见光降解性能研究[J]. 水处理技术, 2024, 50(2): 83-89. |
| Xue S Y, Feng Y M, Zhang L L, et al. Preparation of C-doped g-C3N4/PVDF nanofiber membrane and its degradation performance under visible light[J]. Technology of Water Treatment, 2024, 50(2): 83-89. | |
| [31] | Wang Q Q, Tian Y X, Chen M Y, et al. Preparation of porous C doped g-C3N4 nanosheets controlled by acetamide for photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2022, 47(71): 30517-30529. |
| [32] | Chen M, Wang H H, Chen X Y, et al. High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study[J]. Chemical Engineering Journal, 2020, 390: 124481. |
| [33] | Xing Q F, Zhang M, Xu X Q, et al. Rapid photocatalytic inactivation of E.coli by polyethyleneimine grafted O-doped g-C3N4: synergetic effects of the boosted reactive oxygen species production and adhesion performance[J]. Applied Surface Science, 2022, 573: 151496. |
| [34] | Shang Q Q, Fang Y Z, Yin X L, et al. Structure modulation of g-C3N4 in TiO2{001}/g-C3N4 hetero-structures for boosting photocatalytic hydrogen evolution[J]. RSC Advances, 2021, 11(59): 37089-37102. |
| [35] | Dehkordi A B, Badiei A. Insight into the activity of TiO2 @nitrogen-doped hollow carbon spheres supported on g-C3N4 for robust photocatalytic performance[J]. Chemosphere, 2022, 288: 132392. |
| [36] | Zhang P, Wu L J, Pan W G, et al. Efficient photocatalytic H2 evolution over NiS-PCN Z-scheme composites via dual charge transfer pathways[J]. Applied Catalysis B: Environmental, 2021, 289: 120040. |
| [37] | Ke T, Shen S Y, Yang K, et al. In situ fabrication of Bi2O3/C3N4/TiO2@C photocatalysts for visible-light photodegradation of sulfamethoxazole in water[J]. Applied Surface Science, 2022, 580: 152302. |
| [38] | Byrne C, Moran L, Hermosilla D, et al. Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: theory and experiments[J]. Applied Catalysis B: Environmental, 2019, 246: 266-276. |
| [39] | Wang J, Wang G H, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation[J]. Chinese Journal of Catalysis, 2021, 42(1): 56-68. |
| [40] | Qin H, Guo R T, Liu X Y, et al. Z-Scheme MoS2/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction[J]. Dalton Transactions, 2018, 47(42): 15155-15163. |
| [41] | Su L X, Liu Z Y, Ye Y L, et al. Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19805-19815. |
| [42] | Hua S X, Qu D, An L, et al. Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route[J]. Applied Catalysis B: Environmental, 2019, 240: 253-261. |
| [43] | Tang J Y, Guo R T, Pan W G, et al. Visible light activated photocatalytic behaviour of Eu(Ⅲ) modified g-C3N4 for CO2 reduction and H2 evolution[J]. Applied Surface Science, 2019, 467: 206-212. |
| [1] | 何军, 李勇, 赵楠, 何孝军. 碳负载硒掺杂硫化钴在锂硫电池中的性能研究[J]. 化工学报, 2025, 76(6): 2995-3008. |
| [2] | 廖鹏伟, 刘庆辉, 潘安, 王嘉岳, 符小贵, 杨思宇, 余皓. 考虑不确定性的风电制氢系统:多时间尺度运行策略[J]. 化工学报, 2025, 76(6): 2743-2754. |
| [3] | 卢丽丽, 李晨, 陈柳云, 谢新玲, 罗轩, 苏通明, 秦祖赠, 纪红兵. BiOBr的形貌调控及其光催化CO2还原性能的研究[J]. 化工学报, 2025, 76(6): 2687-2700. |
| [4] | 李愽龙, 蒋雨希, 任傲天, 秦雯琪, 傅杰, 吕秀阳. TS-1/In-TS-1催化果糖一步法醇解制备乳酸甲酯连续化试验[J]. 化工学报, 2025, 76(6): 2678-2686. |
| [5] | 茅雨洁, 路晓飞, 锁显, 杨立峰, 崔希利, 邢华斌. 工业气体中微量氧深度脱除催化剂研究进展[J]. 化工学报, 2025, 76(5): 1997-2010. |
| [6] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [7] | 陶智能, 邱彤, 王保国. 阴离子交换膜电解水制氢稳态建模[J]. 化工学报, 2025, 76(4): 1711-1721. |
| [8] | 赵鹏飞, 戚若玫, 郭新锋, 方虎, 徐庐飞, 李潇, 林今. 千标方级碱性水电解制氢系统氧中氢杂质分析[J]. 化工学报, 2025, 76(4): 1765-1778. |
| [9] | 赵丽文, 刘桂莲. 基于系统集成的复杂催化反应系统性能强化及参数优化[J]. 化工学报, 2025, 76(3): 1111-1119. |
| [10] | 李京润, 杨思宇, 刘庆辉, 潘安, 王嘉岳, 符小贵, 余皓. 大规模风电耦合火电制氢多情景下不同运行策略分析[J]. 化工学报, 2025, 76(3): 1191-1206. |
| [11] | 万俊, 宋佳芮, 范春煌, 魏乐乐, 聂依娜, 刘琳. 高效空穴转移助力光催化碱性甲醇-水溶液制氢[J]. 化工学报, 2025, 76(3): 1064-1075. |
| [12] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
| [13] | 钟晓航, 许卫, 张文, 许莉, 王宇新. 碱性水电解制氢中铁杂质的影响研究进展[J]. 化工学报, 2025, 76(2): 519-531. |
| [14] | 白谨豪, 管小平, 杨宁. 压滤式水电解槽乳突板内的流动特性分析与优化[J]. 化工学报, 2025, 76(2): 584-595. |
| [15] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号