化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3339-3349.DOI: 10.11949/0438-1157.20241533
唐羽丰(
), 陶春珲, 王永正, 李印辉, 段然, 赵泽一, 马和平(
)
收稿日期:2024-12-31
修回日期:2025-01-23
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
马和平
作者简介:唐羽丰(1998—),男,硕士研究生,3122316012@stu.xjtu.edu.cn
基金资助:
Yufeng TANG(
), Chunhui TAO, Yongzheng WANG, Yinhui LI, Ran DUAN, Zeyi ZHAO, Heping MA(
)
Received:2024-12-31
Revised:2025-01-23
Online:2025-07-25
Published:2025-08-13
Contact:
Heping MA
摘要:
熔盐堆核燃料燃烧和乏燃料后处理过程会释放大量Kr-85放射性气体。Kr-85的有效回收和安全存储可降低核设施和后处理厂放射性气态流出物的排放剂量,对核燃料循环的安全保障具有重要意义。基于固体多孔吸附剂的吸附存储技术相较于当前采用的不锈钢压力罐储存技术具有存储压力低和存放体积小等优势。开发具有高Kr气吸附容量的多孔吸附剂对降低Kr-85储罐压力、缩小放射性储罐体积十分重要。由于Kr-85的β衰变会释放高能量电子,能与金属元素作用发生轫致辐射产生二次射线,因此金属有机框架吸附剂不适合Kr-85的长期存储。本文合成了三种不含金属元素且具有超高比表面积的碳基多孔吸附剂(多孔芳香框架PAF-1,比表面积为5310 m2/g;超交联聚合物HCP-2,比表面积为2887 m2/g;超级活性炭XJTU-C,比表面积为2505 m2/g)作为Kr气存储材料,并对其不同温度和压力下的Kr气储存性能进行了详细研究。采用高压吸附仪分析了三种吸附剂孔性质(如比表面积、孔径大小、微孔比例)与Kr气存储容量和吸附速度的关系。在2 MPa和0℃条件下,PAF-1具有最高的比表面积和集中于1.4 nm的微孔,对Kr气的最大绝对吸附量达到1270 mg/g;XJTU-C吸附剂对Kr气的最大绝对吸附量为1179 mg/g,且具有最高的氪气吸附焓及吸附速度,但其吸附量对温度变化较为敏感;HCP-2材料对Kr气的绝对吸附量为733 mg/g,但是其微孔占比较小的孔结构对Kr分子的亲和力比XJTU-C低,导致高压Kr吸附容量不高。本研究分析了影响Kr气存储性能的关键因素,为后续设计、合成具有良好Kr气存储性能的吸附剂提供了实验依据。
中图分类号:
唐羽丰, 陶春珲, 王永正, 李印辉, 段然, 赵泽一, 马和平. 超高比表面积碳基多孔吸附剂制备及其Kr气存储性能研究[J]. 化工学报, 2025, 76(7): 3339-3349.
Yufeng TANG, Chunhui TAO, Yongzheng WANG, Yinhui LI, Ran DUAN, Zeyi ZHAO, Heping MA. Preparation of carbon based porous adsorbent with ultra high specific surface area and its Kr gas storage performance[J]. CIESC Journal, 2025, 76(7): 3339-3349.
| 样品 | 元素含量/% | |||
|---|---|---|---|---|
| N | C | H | O | |
| PAF-1 | 0.39 | 92.01 | 5.54 | 2.284 |
| HCP-2 | 0.17 | 87.04 | 6.55 | 2.860 |
| XJTU-C | 0.43 | 97.21 | 0.66 | 1.050 |
表1 样品的元素分析数据
Table 1 Elemental analysis data of sample
| 样品 | 元素含量/% | |||
|---|---|---|---|---|
| N | C | H | O | |
| PAF-1 | 0.39 | 92.01 | 5.54 | 2.284 |
| HCP-2 | 0.17 | 87.04 | 6.55 | 2.860 |
| XJTU-C | 0.43 | 97.21 | 0.66 | 1.050 |
| 材料 | 吸附类型 | 0℃吸附量/ (mg/g) | 25℃吸附量/(mg/g) | 40℃吸附量/(mg/g) |
|---|---|---|---|---|
| PAF-1 | 过剩吸附 | 970 | 914 | 857 |
| 绝对吸附 | 1270 | 1140 | 1056 | |
| HCP-2 | 过剩吸附 | 550 | 477 | 380 |
| 绝对吸附 | 733 | 621 | 483 | |
| XJTU-C | 过剩吸附 | 885 | 738 | 634 |
| 绝对吸附 | 1179 | 1032 | 805 |
表2 PAF-1、HCP-2、XJTU-C质量吸附量对比
Table 2 Mass adsorption capacity of PAF-1, HCP-2 and XJTU-C
| 材料 | 吸附类型 | 0℃吸附量/ (mg/g) | 25℃吸附量/(mg/g) | 40℃吸附量/(mg/g) |
|---|---|---|---|---|
| PAF-1 | 过剩吸附 | 970 | 914 | 857 |
| 绝对吸附 | 1270 | 1140 | 1056 | |
| HCP-2 | 过剩吸附 | 550 | 477 | 380 |
| 绝对吸附 | 733 | 621 | 483 | |
| XJTU-C | 过剩吸附 | 885 | 738 | 634 |
| 绝对吸附 | 1179 | 1032 | 805 |
| 材料 | 密度/ (g/cm3) | 吸附类型 | 0℃吸附量/(mg/cm3) | 25℃吸附量/ (mg/cm3) | 40℃吸附量/ (mg/cm3) |
|---|---|---|---|---|---|
| PAF-1 | 0.10 | 过剩吸附 | 97 | 91 | 85 |
| 绝对吸附 | 127 | 114 | 105 | ||
| HCP-2 | 0.38 | 过剩吸附 | 209 | 181 | 144 |
| 绝对吸附 | 278 | 236 | 183 | ||
| XJTU-C | 0.32 | 过剩吸附 | 283 | 236 | 202 |
| 绝对吸附 | 377 | 330 | 257 |
表3 PAF-1、HCP-2、XJTU-C体积吸附量对比
Table 3 Volumetric adsorption capacity of PAF-1, HCP-2 and XJTU-C
| 材料 | 密度/ (g/cm3) | 吸附类型 | 0℃吸附量/(mg/cm3) | 25℃吸附量/ (mg/cm3) | 40℃吸附量/ (mg/cm3) |
|---|---|---|---|---|---|
| PAF-1 | 0.10 | 过剩吸附 | 97 | 91 | 85 |
| 绝对吸附 | 127 | 114 | 105 | ||
| HCP-2 | 0.38 | 过剩吸附 | 209 | 181 | 144 |
| 绝对吸附 | 278 | 236 | 183 | ||
| XJTU-C | 0.32 | 过剩吸附 | 283 | 236 | 202 |
| 绝对吸附 | 377 | 330 | 257 |
| 吸附剂 | a0 | a1 | a2 | a3 | a4 | a5 | b0 | b1 | b2 | R2 |
|---|---|---|---|---|---|---|---|---|---|---|
| PAF-1 | -2623.18291 | 530.31027 | -37.83687 | 1.23826 | -0.07942 | 0.00231 | 14.60973 | -1.50085 | 0.09018 | 0.99943 |
| HCP-2 | -1812.82029 | 85.3354 | -7.18885 | 2.23261 | -0.32743 | 0.02301 | 12.91298 | -0.05764 | -0.00503 | 0.99998 |
| XJTU-C | -2191.83641 | 193.13465 | -28.26386 | 2.86836 | -0.22259 | 0.0073 | 13.37044 | -0.34249 | 0.03439 | 0.99999 |
表4 三种材料的Kr吸附等温线的维里方程拟合参数
Table 4 Fitting parameters of Virial equation for Kr adsorption isotherms of three materials
| 吸附剂 | a0 | a1 | a2 | a3 | a4 | a5 | b0 | b1 | b2 | R2 |
|---|---|---|---|---|---|---|---|---|---|---|
| PAF-1 | -2623.18291 | 530.31027 | -37.83687 | 1.23826 | -0.07942 | 0.00231 | 14.60973 | -1.50085 | 0.09018 | 0.99943 |
| HCP-2 | -1812.82029 | 85.3354 | -7.18885 | 2.23261 | -0.32743 | 0.02301 | 12.91298 | -0.05764 | -0.00503 | 0.99998 |
| XJTU-C | -2191.83641 | 193.13465 | -28.26386 | 2.86836 | -0.22259 | 0.0073 | 13.37044 | -0.34249 | 0.03439 | 0.99999 |
| [1] | Boeck W L. Krypton 85, a global contaminant[C]//Electrical Processes in Atmospheres. Heidelberg: Steinkopff, 1976: 713-715. |
| [2] | Ahlswede J, Hebel S, Ross J O, et al. Update and improvement of the global krypton-85 emission inventory[J]. Journal of Environmental Radioactivity, 2013, 115: 34-42. |
| [3] | Peterson M. Krypton 85: nuclear air pollutant[J]. Scientist and Citizen, 1967, 9(3): 54-55. |
| [4] | Tingey G L, McClanahan E D, Bayne M A, et al. Krypton-85 storage in solid matrices[M]//Scientific Basis for Nuclear Waste Management. Boston, MA: Springer US, 1980: 361-368. |
| [5] | Smethie W M, Solomon D K, Schiff S L, et al. Tracing groundwater flow in the Borden aquifer using krypton-85[J]. Journal of Hydrology, 1992, 130(1/2/3/4): 279-297. |
| [6] | Benedict R W, Christensen A B, Del Debbio J A, et al. Technical feasibility of krypton-85 storage in sodalite[M]//Scientific Basis for Nuclear Waste Management. Boston, MA: Springer US, 1980: 369-376. |
| [7] | 熊顺顺, 闫钊通, 刘博煜, 等. 放射性惰性气体分离与分离材料研究进展[J]. 核化学与放射化学, 2020, 42(6): 478-497. |
| Xiong S S, Yan Z T, Liu B Y, et al. Research progress on radioactive noble gas separation and separation materials[J]. Journal of Nuclear and Radiochemistry, 2020, 42(6): 478-497. | |
| [8] | Schoeppner M, Glaser A. Present and future potential of krypton-85 for the detection of clandestine reprocessing plants for treaty verification[J]. Journal of Environmental Radioactivity, 2016, 162: 300-309. |
| [9] | Laser M. Separation, storage, and disposal of krypton-85: status and projects[R]. Germany: N. P., 1976. |
| [10] | 逄锦鑫, 尹玉国, 孙尔雁. 乏燃料后处理中氪-85处理技术研究[J]. 广东化工, 2022, 49(11): 78-80. |
| Pang J X, Yin Y G, Sun E Y. Understanding the treatment technology of Kr-85 during the spent fuel reprocessing[J]. Guangdong Chemical Industry, 2022, 49(11): 78-80. | |
| [11] | 国家质检总局. 核动力厂环境辐射防护: [S]. 北京, 中国标准出版社, 2011. |
| General Administration of Quality Supervision, Inspection and Quarantine. Environmental radiation for nuclear power plants: [S]. Beijing: Standards Press of China, 2011. | |
| [12] | 陆治美. 放射性同位素提取及制源工艺[M]. 北京: 中国原子能出版社, 2012. |
| Lu Z M. Radioisotope Extraction and Source Preparation Technology[M]. Beijing: China Atomic Energy Press, 2012. | |
| [13] | Waggoner R C. Technical and economic evaluation of processes for krypton-85 recovery from power fuel-reprocessing plant off-gas[R]. NASA, 1982. |
| [14] | Christensen A. Physical properties and heat transfer characteristics of materials for krypton-85 storage[R]. OSTI, 1977, 79: 10248. |
| [15] | Chuah C Y, Yu S, Na K, et al. Enhanced SF6 recovery by hierarchically structured MFI zeolite[J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 64-71. |
| [16] | 侯敏. 高性能超级电容器用活性炭的制备研究[D]. 北京: 中国林业科学研究院, 2016. |
| Hou M. Preparation of activated carbon for high performance supercapacitor[D]. Beijing: Chinese Academy of Forestry, 2016. | |
| [17] | Pinchback T R, Knecht D A. The development of process and storage materials suitable for krypton-85 waste management[M]//Scientific Basis for Nuclear Waste Management. Boston, MA: Springer US, 1979: 479-485. |
| [18] | 林舒媛, 张儒静, 姜欣, 等. 碳质材料的气体吸附性能及其在空气净化中的应用[J]. 新型炭材料, 2015, 30(6): 502-510. |
| Lin S Y, Zhang R J, Jiang X, et al. Gas adsorption properties of carbon materials and their applications in air purification[J]. New Carbon Materials, 2015, 30(6): 502-510. | |
| [19] | Mishra R, Panda P, Barman S. Synthesis of sulfur-doped porous carbon for supercapacitor and gas adsorption applications[J]. International Journal of Energy Research, 2022, 46(3): 2585-2600. |
| [20] | Li W N, Wang K Y, Li Z, et al. Preparation of high-performance supercapacitors from waste polyurethane-based hierarchical porous carbon[J]. New Journal of Chemistry, 2022, 46(48): 23328-23337. |
| [21] | Vorokhta M, Morávková J, Dopita M, et al. Effect of micropores on CO2 capture in ordered mesoporous CMK-3 carbon at atmospheric pressure[J]. Adsorption, 2021, 27(8): 1221-1236. |
| [22] | Cai L M, Zhang Y Z, Ma R, et al. Nitrogen-doped hierarchical porous carbon derived from coal for high-performance supercapacitor[J]. Molecules, 2023, 28(9): 3660. |
| [23] | Li F, Xie L J, Sun G H, et al. Boosting the specific surface area of hierarchical porous carbon aerogel through the multiple roles of the catalyst for high-performance supercapacitors[J]. ChemElectroChem, 2017, 4(12): 3119-3125. |
| [24] | Tagbo P C, Ibrahim I, Mohamed G G, et al. Cutting-edge research on mixed-metal MOFs: fabrication, characterization, properties, and uses[J]. Journal of Organometallic Chemistry, 2025, 1028: 123531. |
| [25] | Jubin R T, Bruffey S H. Analysis of krypton-85 legacy waste forms: part Ⅱ[J]. Nuclear Technology, 2019, 205(6): 830-846. |
| [26] | Bernal M P, Coronas J, Menéndez M, et al. Separation of CO2/N2 mixtures using MFI-type zeolite membranes[J]. AIChE Journal, 2004, 50(1): 127-135. |
| [27] | Reato P T, Todero A S, de Oliveira Pereira F, et al. Mesoporous materials of the MCM type: synthesis, application, use of ionic solids and functionalization with graphene: a review[J]. Silicon, 2023, 15(10): 4345-4364. |
| [28] | Liu F, Qin L Y, Ye P W, et al. Introducing molecular sieve into activated carbon to achieve high-effective adsorption for ethylene oxide[J]. Nanomaterials, 2024, 14(18): 1482. |
| [29] | Ben T, Pei C Y, Zhang D L, et al. Gas storage in porous aromatic frameworks (PAFs)[J]. Energy & Environmental Science, 2011, 4(10): 3991-3999. |
| [30] | Díaz U, Corma A. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application[J]. Coordination Chemistry Reviews, 2016, 311: 85-124. |
| [31] | Pei C Y, Ben T, Qiu S L. Great prospects for PAF-1 and its derivatives[J]. Materials Horizons, 2015, 2(1): 11-21. |
| [32] | Garibay S J, Weston M H, Mondloch J E, et al. Accessing functionalized porous aromatic frameworks (PAFs) through a de novo approach[J]. CrystEngComm, 2013, 15(8): 1515-1519. |
| [33] | Demirocak D E, Ram M K, Srinivasan S S, et al. A novel nitrogen rich porous aromatic framework for hydrogen and carbon dioxide storage[J]. Journal of Materials Chemistry A, 2013, 1(44): 13800-13806. |
| [34] | Thool K, Yazar K U, Kavimani V, et al. Microstructural and textural evolution in hexagonal close-packed metals: the case of zirconium, magnesium, and titanium[J]. Crystals, 2024, 14(8): 727. |
| [35] | Bu Y Q, Li Z M, Liu J B, et al. Nonbasal slip systems enable a strong and ductile hexagonal-close-packed high-entropy phase[J]. Physical Review Letters, 2019, 122(7): 075502. |
| [36] | Tracy C L, Park S, Rittman D R, et al. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi[J]. Nature Communications, 2017, 8: 15634. |
| [37] | Yang S K, Zhong Z C, Hu J R, et al. Dibromomethane knitted highly porous hyper-cross-linked polymers for efficient high-pressure methane storage[J]. Advanced Materials, 2024, 36(19): 2307579. |
| [38] | Hou S S, Tan B E. Naphthyl substitution-induced fine tuning of porosity and gas uptake capacity in microporous hyper-cross-linked amine polymers[J]. Macromolecules, 2018, 51(8): 2923-2931. |
| [39] | Ben T, Ren H, Ma S Q, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 48(50): 9457-9460. |
| [1] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 裴星亮, 叶翠平, 裴赢丽, 李文英. 碱改性MIL-53(Cr)选择性吸附分离二甲苯异构体[J]. 化工学报, 2025, 76(S1): 258-267. |
| [4] | 吴梓航, 徐震原, 游锦方, 潘权稳, 王如竹. 基于吸附式储冷技术的深井钻探设备冷却系统[J]. 化工学报, 2025, 76(S1): 309-317. |
| [5] | 黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417. |
| [6] | 王孝宇, 戴贵龙, 邓树坤, 龚凌诸. Laguerre-Voronoi开孔泡沫流动-传热综合性能孔隙尺度模拟[J]. 化工学报, 2025, 76(7): 3259-3273. |
| [7] | 何军, 李勇, 赵楠, 何孝军. 碳负载硒掺杂硫化钴在锂硫电池中的性能研究[J]. 化工学报, 2025, 76(6): 2995-3008. |
| [8] | 颜成辉, 谢应明, 庞治海, 翁盛乔. 泡沫多孔材料对R134a水合物蓄冷的强化研究[J]. 化工学报, 2025, 76(6): 3084-3092. |
| [9] | 彭新艳, 刘云鸿, 陈凌宇, 韦跃兰, 陈淑琴, 胡柱东. 小分子外交联法制备超高交联聚苯乙烯血液灌流吸附剂[J]. 化工学报, 2025, 76(6): 3093-3103. |
| [10] | 杨盛华, 孙阳杰, 薛晓君, 米杰, 王建成, 冯宇. 缺陷型金属氧化物脱除气体污染物研究进展[J]. 化工学报, 2025, 76(6): 2469-2482. |
| [11] | 郭彭涛, 王婷, 薛波, 应允攀, 刘大欢. 用于CH4/N2分离的多吸附位点超微孔MOF[J]. 化工学报, 2025, 76(5): 2304-2312. |
| [12] | 唐磊, 王振菲, 李聪利, 杨佳辉, 郑浩, 石琪, 董晋湘. Co-MOF-74和Mg-MOF-74的CO工作吸附容量及操作条件[J]. 化工学报, 2025, 76(5): 2279-2293. |
| [13] | 李艳, 雷美丽, 李鑫钢. 基于分离性能的顺序式模拟移动床结构调控策略[J]. 化工学报, 2025, 76(5): 2219-2229. |
| [14] | 巴雅琪, 吴涛, 邸安頔, 陆安慧. 多孔炭材料用于低碳烃分离的研究进展[J]. 化工学报, 2025, 76(5): 2136-2157. |
| [15] | 谈朋, 李雪梅, 刘晓勤, 孙林兵. 基于柔性MOFs的磁响应复合材料及其丙烯吸附性能研究[J]. 化工学报, 2025, 76(5): 2230-2240. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号