• •
颜成辉1,2(), 谢应明1,2(
), 庞治海1,2, 翁盛乔1,2
收稿日期:
2024-09-23
修回日期:
2025-01-06
出版日期:
2025-01-07
通讯作者:
谢应明
作者简介:
颜成辉(1999—),男,硕士研究生,1214509861@qq.com
基金资助:
Chenghui YAN1,2(), Yingming XIE1,2(
), Zhihai PANG1,2, Shengqiao WENG1,2
Received:
2024-09-23
Revised:
2025-01-06
Online:
2025-01-07
Contact:
Yingming XIE
摘要:
为了强化R134a水合物制备系统的蓄冷性能,研究了三种泡沫多孔材料体系(碳化硅泡沫陶瓷、泡沫铝、泡沫铜)下不同的孔密度(PPI)和不同材料厚度对实验台蓄冷特性的影响,并使用Fluent对系统进行优化研究。实验表明充注压力为0.25MPa时,添加不同孔密度(10、20、30)的泡沫多孔材料均能对R134a水合物实验台的蓄冷性能起到促进作用,但随着孔密度的增大,三种材料体系的蓄冷特性都随之降低。当孔密度同为10PPI时,实验结果表明材料厚度为30mm时,水合物蓄冷特性达到最优。且材料为泡沫铜时,系统的预冷时间和蓄冷时间达到最低,分别为35.80min和42.61min;总蓄冷量为937.71kJ、蓄冷速率为0.364kW,水合物生成质量为0.992kg。数值模拟结果表明:当散流器入口流速为8m/s时,反应釜内的两相流性能最佳,更有利于R134a水合物围绕着多孔介质大量生成。
中图分类号:
颜成辉, 谢应明, 庞治海, 翁盛乔. 泡沫多孔材料对R134a水合物蓄冷的强化研究[J]. 化工学报, DOI: 10.11949/0438-1157.20241056.
Chenghui YAN, Yingming XIE, Zhihai PANG, Shengqiao WENG. Study on strengthening of cold storage of R134a hydrate by foamed porous materials[J]. CIESC Journal, DOI: 10.11949/0438-1157.20241056.
材料 | 孔密度(PPI) | 反应中水蓄冷量(kJ) | 釜体蓄冷量(kJ) | 水合物蓄冷量(kJ) | 总蓄冷量(kJ) |
---|---|---|---|---|---|
无 | / | 252.22 | 336.16 | 246.70 | 836.13 |
泡沫陶瓷 | 10 | 250.97 | 332.99 | 284.67 | 868.73 |
20 | 250.22 | 333.66 | 279.11 | 860.11 | |
30 | 251.72 | 334.99 | 269.68 | 857.12 | |
泡沫铝 | 10 | 250.84 | 334.66 | 278.61 | 865.34 |
20 | 251.60 | 338.16 | 267.94 | 860.47 | |
30 | 250.47 | 335.49 | 263.0 | 851.33 | |
泡沫铜 | 10 | 249.59 | 332.99 | 307.45 | 891.23 |
20 | 250.34 | 334.99 | 291.18 | 878.33 | |
30 | 249.84 | 334.49 | 273.46 | 859.75 |
表1 不同工况下蓄冷系统的蓄冷特性
Table 1 Characteristics of cold storage system under different working conditions
材料 | 孔密度(PPI) | 反应中水蓄冷量(kJ) | 釜体蓄冷量(kJ) | 水合物蓄冷量(kJ) | 总蓄冷量(kJ) |
---|---|---|---|---|---|
无 | / | 252.22 | 336.16 | 246.70 | 836.13 |
泡沫陶瓷 | 10 | 250.97 | 332.99 | 284.67 | 868.73 |
20 | 250.22 | 333.66 | 279.11 | 860.11 | |
30 | 251.72 | 334.99 | 269.68 | 857.12 | |
泡沫铝 | 10 | 250.84 | 334.66 | 278.61 | 865.34 |
20 | 251.60 | 338.16 | 267.94 | 860.47 | |
30 | 250.47 | 335.49 | 263.0 | 851.33 | |
泡沫铜 | 10 | 249.59 | 332.99 | 307.45 | 891.23 |
20 | 250.34 | 334.99 | 291.18 | 878.33 | |
30 | 249.84 | 334.49 | 273.46 | 859.75 |
材料 | 厚度 (mm) | 蓄冷时间 (min) | 预冷时间 (min) | 平均蓄冷速率 (kW) | 总蓄冷量 (kJ) |
---|---|---|---|---|---|
泡沫陶瓷 | 20 | 50.34 | 43.15 | 0.295 | 891.23 |
30 | 47.63 | 40.17 | 0.324 | 926.34 | |
40 | 48.08 | 40.83 | 0.317 | 913.87 | |
20 | 49.83 | 42.83 | 0.295 | 881.26 | |
泡沫铝 | 30 | 46.83 | 39.83 | 0.321 | 901.03 |
40 | 47.96 | 40.42 | 0.312 | 891.23 | |
20 | 46.36 | 37.96 | 0.337 | 914.71 | |
泡沫铜 | 30 | 42.61 | 35.80 | 0.364 | 937.71 |
40 | 48.36 | 36.73 | 0.321 | 931.16 |
表2 不同厚度的泡沫多孔材料系统的蓄冷特性
Table 2 Cool storage characteristics of foam porous material systems with different thicknesses
材料 | 厚度 (mm) | 蓄冷时间 (min) | 预冷时间 (min) | 平均蓄冷速率 (kW) | 总蓄冷量 (kJ) |
---|---|---|---|---|---|
泡沫陶瓷 | 20 | 50.34 | 43.15 | 0.295 | 891.23 |
30 | 47.63 | 40.17 | 0.324 | 926.34 | |
40 | 48.08 | 40.83 | 0.317 | 913.87 | |
20 | 49.83 | 42.83 | 0.295 | 881.26 | |
泡沫铝 | 30 | 46.83 | 39.83 | 0.321 | 901.03 |
40 | 47.96 | 40.42 | 0.312 | 891.23 | |
20 | 46.36 | 37.96 | 0.337 | 914.71 | |
泡沫铜 | 30 | 42.61 | 35.80 | 0.364 | 937.71 |
40 | 48.36 | 36.73 | 0.321 | 931.16 |
1 | 秦威南, 何强, 祝强, 等. 相变蓄冷材料研究进展[J]. 化工新型材料, 2021, 49(5): 1-6. |
Qin W N, He Q, Zhu Q, et al. Research progress on phase change cold storage material[J]. New Chemical Materials, 2021, 49(5): 1-6. | |
2 | 汪向磊, 王文梅, 曹和平, 等. 蓄冷技术现状及研究进展[J]. 山西化工, 2016, 36(1): 34-40. |
Wang X L, Wang W M, Cao H P, et al. Current status and recent advance of cold storage technology[J]. Shanxi Chemical Industry, 2016, 36(1): 34-40. | |
3 | 史杰, 郭恒超, 常晟, 等. 浦东机场能源中心水蓄冷系统设计与性能分析[J]. 流体机械, 2020, 48(9): 71-76. |
Shi J, Guo H C, Chang C, et al. Design and performance analysis of the water cold storage system in the energy center of Pudong international airport[J]. Fluid Machinery, 2020, 48(9): 71-76. | |
4 | 吴少光, 廖晓华, 蔡戈锋. 串并联结合水蓄冷系统应用研究[J]. 暖通空调, 2021, 51(6): 88-92, 39. |
Wu S G, Liao X H, Cai G F. Application of series and parallel combined water cool storage system[J]. Heating Ventilating & Air Conditioning, 2021, 51(6): 88-92, 39. | |
5 | 滕跃, 刘钊, 王文科, 等. 冰蓄冷空调技术在电网调峰中的应用[J]. 科技创新与应用, 2023, 13(12): 166-169. |
Teng Y, Liu Z, Wang W K, et al. Application of ice storage air conditioning technology in peak regulation of power grid[J]. Technology Innovation and Application, 2023, 13(12): 166-169. | |
6 | Lin W M, Tu C S, Tsai M T, et al. Optimal energy reduction schedules for ice storage air-conditioning systems[J]. Energies, 2015, 8(9): 10504-10521. |
7 | 丁军丹. 低温共晶盐蓄冷研究[D]. 南京: 南京理工大学, 2017. |
Ding J D. Study on cold storage of eutectic salt at low temperature[D]. Nanjing: Nanjing University of Science and Technology, 2017. | |
8 | 薛倩, 王晓霖, 李遵照, 等. 水合物利用技术应用进展[J]. 化工进展, 2021, 40(2): 722-735. |
Xue Q, Wang X L, Li Z Z, et al. Research progresses in hydrate based technologies and processes[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 722-735. | |
9 | 杨群芳. 制冷剂水合物蓄冷技术研究现状及应用前景[J]. 科技信息, 2012(17): 39-40. |
Yang Q F. Research status and advance of refrigerants hydrate cooling storage technology[J]. Science & Technology Information, 2012(17): 39-40. | |
10 | 李廷勋, 鲁健, 何东财, 等. 新型替代制冷剂房间空调器系统特性实验研究[J]. 制冷学报, 2015, 36(3): 56-60. |
Li T X, Lu J, He D C, et al. An experiment study on performance of new alternatives in room air-conditioner[J]. Journal of Refrigeration, 2015, 36(3): 56-60. | |
11 | 王英梅, 牛爱丽, 张兆慧, 等. 二氧化碳水合物快速生成方法研究进展[J]. 化工进展, 2021, 40(S2): 117-125. |
Wang Y M, Niu A L, Zhang Z H, et al. Research progress on rapid generation methods of carbon dioxide hydrate[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 117-125. | |
12 | 丁宇, 荣少杰, 刘青松. 四丁基溴化铵-二氧化碳体系中不同结构水合物生成条件测量与模型预测研究[J]. 当代化工研究, 2022(19): 27-29. |
Ding Y, Rong S J, Liu Q S. Experimental and modeling study on phase equilibria of the different semiclathrate hydrates fomred by tetra-n-butyl ammonium bromide + carbon dioxide[J]. Modern Chemical Research, 2022(19): 27-29. | |
13 | 程传晓, 李伦, 胡深, 等. 鼓泡法强化甲烷水合物成核及生长研究[J]. 低温与超导, 2021, 49(2): 55-60, 104. |
Cheng C X, Li L, Hu S, et al. Study on the enhancement of nucleation and growth of methane hydrate by bubbling[J]. Cryogenics & Superconductivity, 2021, 49(2): 55-60, 104. | |
14 | Rahul S, Chandan S, Rajnish K, et al. Impact of acetamide, 1, 2, 4-triazole, and 1-dodecyl-2-pyrrolidinone on carbon dioxide hydrate growth: Application in carbon dioxide capture and sequestration[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110103. |
15 | Stoporev A S, Semenov A P, Medvedev V I, et al. Nucleation of gas hydrates in multiphase systems with several types of interfaces[J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(1): 783-795. |
16 | Li H J, Wang L G. Hydrophobized particles can accelerate nucleation of clathrate hydrates[J]. Fuel, 2015, 140: 440-445. |
17 | Childers M C, Daggett V. Insights from molecular dynamics simulations for computational protein design[J]. Molecular Systems Design & Engineering, 2017, 2(1): 9-33. |
18 | Yang L, Fan S S, Wang Y H, et al. Accelerated formation of methane hydrate in aluminum foam[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11563-11569. |
19 | Liu X W, Tian L Q, Chen D Y, et al. Accelerated formation of methane hydrates in the porous SiC foam ceramic packed reactor[J]. Fuel, 2019, 257: 115858. |
20 | Li R L, Liu D P, Yang L, et al. Rapid methane hydrate formation in aluminum honeycomb[J]. Fuel, 2019, 252: 574-580. |
21 | Lu Y Y, Ge B B, Zhong D L. Investigation of using graphite nanofluids to promote methane hydrate formation: Application to solidified natural gas storage[J]. Energy, 2020, 199: 117424. |
22 | Xu G, Xu C G, Wang M, et al. Influence of nickel foam on kinetics and separation efficiency of hydrate-based Carbon dioxide separation[J]. Energy, 2021, 231: 120826. |
23 | Ekambara K, Dhotre M T, Joshi J B. CFD simulations of bubble column reactors: 1D, 2D and 3D approach[J]. Chemical Engineering Science, 2005, 60(23): 6733-6746. |
24 | Bhole M R, Joshi J B, Ramkrishna D. CFD simulation of bubble columns incorporating population balance modeling[J]. Chemical Engineering Science, 2008, 63(8): 2267-2282. |
25 | 雷建勇. 通气结构对鼓泡容器内气液两相分布的影响[D]. 西安: 西北大学, 2014. |
Lei J Y. Effect of aeration structure on gas-liquid two-phase distribution in bubbling container[D]. Xi'an: Northwest University, 2014. | |
26 | 于萍. 工程流体力学[M]. 2版. 北京: 科学出版社, 2015. |
Yu P. Engineering fluid mechanics[M]. 2nd ed. Beijing: Science Press, 2015. | |
27 | 张师帅. CFD技术原理与应用[M]. 武汉: 华中科技大学出版社, 2016. |
Zhang S S. Principle and application of CFD technology[M]. Wuhan: Huazhong University of Science and Technology Press, 2016. | |
28 | Laborde-Boutet C, Larachi F, Dromard N, et al. CFD simulation of bubble column flows: Investigations on turbulence models in RANS approach[J]. Chemical Engineering Science, 2009, 64(21): 4399-4413. |
29 | Zhang D, Deen N G, Kuipers J A M. Numerical simulation of the dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces[J]. Chemical Engineering Science, 2006, 61(23): 7593-7608. |
30 | Sommerfeld M, Decker S. State of the art and future trends in CFD simulation of stirred vessel hydrodynamics[J]. Chemical Engineering & Technology, 2004, 27(3): 215-224. |
31 | Chung K H K, Simmons M J H, Barigou M. Angle-resolved particle image velocimetry measurements of flow and turbulence fields in small-scale stirred vessels of different mixer configurations[J]. Industrial & Engineering Chemistry Research, 2009, 48(2): 1008-1018. |
[1] | 李雨霜, 王兴成, 温伯尧, 骆政园, 白博峰. 多孔介质中乳状液驱油的两相流动过程及其影响因素[J]. 化工学报, 2024, 75(S1): 56-66. |
[2] | 徐宏标, 杨亮, 李子栋, 刘道平. 盐水微滴/泡沫铜复合体系中甲烷水合物生成动力学研究[J]. 化工学报, 2024, 75(9): 3287-3296. |
[3] | 杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916. |
[4] | 杨明军, 宋维, 张磊, 凌铮, 陈兵兵, 宋永臣. CO2-海水水合物生成强化方法研究[J]. 化工学报, 2024, 75(8): 2939-2948. |
[5] | 马旭, 滕亚栋, 刘杰, 王宇璐, 张鹏, 张莲海, 姚万龙, 展静, 吴青柏. 喷雾法水合物法捕集分离烟道气中CO2[J]. 化工学报, 2024, 75(5): 2001-2016. |
[6] | 刘礼豪, 黄婷, 雍宇, 罗昕浩, 赵泽明, 宋尚飞, 史博会, 陈光进, 宫敬. 含粉砂盐水体系甲烷水合物生成与固相沉积规律[J]. 化工学报, 2024, 75(5): 1987-2000. |
[7] | 臧雅晴, 张益钧, 王金钊, 王倩, 李殿卿, 冯俊婷, 段雪. 基于反应耦合的低能耗水合氯化钙脱水制无水氯化钙[J]. 化工学报, 2024, 75(4): 1508-1518. |
[8] | 王佳琪, 魏皓琦, 苟阿静, 刘佳兴, 周昕霖, 葛坤. 纳米粒子作用下CO2水合物生成机理研究[J]. 化工学报, 2024, 75(3): 956-966. |
[9] | 王娟, 李秀明, 邵炜涛, 丁续, 霍莹, 付连超, 白云宇, 李迪. 多孔板鼓泡塔流动与传质特性数值模拟[J]. 化工学报, 2024, 75(3): 801-814. |
[10] | 李云昊, 徐纯刚, 李小森, 陈朝阳. 海洋CO2水合物封存基础性研究进展[J]. 化工学报, 2024, 75(12): 4403-4412. |
[11] | 汤涵, 蔡进, 覃海航, 陈光进, 孙长宇. 水合物共存体系中气体溶解度预测模型[J]. 化工学报, 2024, 75(11): 4348-4358. |
[12] | 梁爽, 李兴洵, 高龙燕, 郭绪强, 陈光进, 孙长宇. 油相中水滴表面甲烷水合物膜生长动力学研究[J]. 化工学报, 2024, 75(11): 4369-4377. |
[13] | 李明川, 樊栓狮, 徐赋海, 卢惠东, 李晓军. Quilghini变换法在求解密度跃变的水合物热分解Stefan模型精确解中的应用[J]. 化工学报, 2024, 75(10): 3763-3774. |
[14] | 蔡伟华, 王玉航, 张文超, 李少丹, 刘鑫龙, 蔡本安, 王金成. 多孔介质-文丘里气泡发生器产气特性[J]. 化工学报, 2024, 75(10): 3488-3497. |
[15] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 27
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||