[1] |
Li Junjie (李俊杰), Mu Yang (牟洋), Yang Juan (杨娟), Yu Jian (余剑), Duan Zhengkang (段正康), Xu Guangwen (许光文), Xiong Beichen (熊北辰). Properties of sulfation supported V/Ti denitration catalyst [J]. CIESC Journal (化工学报), 2013, 64 (4): 1249-1255
|
[2] |
Yang Juan (杨娟), Wang Yin (汪印), Yu Jian (余剑), Xu Guangwen (许光文). Removal of low concentration NO at room temperature using metal oxide supported on activated carbon [J]. CIESC Journal (化工学报), 2012, 63 (8): 2538-2543
|
[3] |
Mu Yang (牟洋), Yang Juan (杨娟), Yu Jian (余剑), Guo Feng (郭凤), Liu Yunyi (刘云义), Xu Guangwen (许光文). Effect of metal sulfate and oxide additives on performance of SCR denitration catalyst [J]. CIESC Journal (化工学报), 2013, 64 (9): 3220-3227
|
[4] |
Gao Yan (高岩), Luan Tao (栾涛), Peng Jiwei (彭吉伟), Lü Tao (吕涛). DeNOx performance of SCR catalyst for exhaust gas from coal-fired power plant [J]. CIESC Journal (化工学报), 2013, 64 (7): 2611-2618
|
[5] |
Khodayari R, Odenbrand C U I. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in biofuel plants [J]. Applied Catalysis B: Environmental, 2001, 30 (1/2): 87-89
|
[6] |
Zheng Y, Jensen A D, Johnson J E, Thøgersen J R. Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants: elucidation of mechanisms by lab and pilot-scale experiments [J]. Appied Catalysis B: Environmental, 2008, 83 (3/4): 186-194
|
[7] |
Gao X, Du X S, Fu Y C, Mao J H, Luo Z Y, Ni M J, Cen K F. Theoretical and experimental study on the deactivation of V2O5 based catalyst by lead for selective catalytic reduction of nitric oxides [J]. Catalysis Today, 2011, 175 (1): 625-630
|
[8] |
Zhao W, Zhong Q, Pan Y, Zhang R. Systematic effects of S-doping in the activity of V2O5/TiO2 catalyst for low-temperature NH3-SCR [J]. Chemical Engineering Journal, 2013, 228: 815-823
|
[9] |
Wang C, Yang S, Chang H, Peng Y, Li J. Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2: acidity, surface species and catalytic activity [J]. Chemical Engineering Journal, 2013, 225: 520-527
|
[10] |
Yang S, Wang C, Li J, Yan N, Ma L, Chang H. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: performance, mechanism and kinetic study [J]. Applied Catalysis B: Environmental, 2011, 110: 71-80
|
[11] |
Yang S, Liu C, Chang H, Ma L, Qu Z, Yan N, Wang C, Li J. Improvement of the activity of γ-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures: NO reduction versus NH3 oxidization [J]. Industrial & Engineering Chemistry Research, 2013, 52: 5601-5610
|
[12] |
Liu F, He H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3 [J]. Journal of Physical Chemistry C, 2010, 114 (40): 16929-16936
|
[13] |
Liu F, He H, Zhang C, Feng Z, Zheng L, Xie Y, Hu T. Selective catalytic reduction of NO with NH3 over iron titanate catalyst: catalytic performance and characterization [J]. Applied Catalysis B: Environmental, 2010, 96 (3/4): 408-420
|
[14] |
Yao Guihuan (姚桂焕), Wang Fang (王芳), Lu Fang (陆芳), Hou Jiatao (侯家涛), Gui Keting (归柯庭). Selective catalytic reduction of de-NOx from flue gas on iron-based catalyst with magnetically fluidized beds [J]. Journal of Engineering Thermophysics (工程热物理学报), 2009, 30 (6): 987-991
|
[15] |
Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey R J. Adsorption, activation, and oxidation of ammonia over SCR catalysts [J]. Journal of Catalysis, 1995, 157 (2): 523-535
|
[16] |
Yao G, Wang F, Wang X, Gui K. Magnetic field effects on selective catalytic reduction of NO by NH3 over Fe2O3 catalyst in a magnetically fluidized bed [J]. Energy, 2010, 35 (5): 2295-2300
|
[17] |
Yang S, Guo Y, Yan N, Qu Z, Xie J, Yang C, Jia J. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures [J]. Journal of Hazardous Materials, 2011, 186 (1): 508-515
|
[18] |
Shen L F, Laibinis P E, Hatton T A. Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces [J]. Langmuir, 1999, 15: 447-453
|
[19] |
Chen D H, Jiao X L, Chen D R. Solvothermal synthesis of particles with different morphologies [J]. Mater. Res. Bull., 2001, 36: 1057-1064
|
[20] |
Taeghwan Hyeon, Su Seong Lee. Monodisperse maghemite nanocrystallies without a size-selection process [J]. Am. Chem. Soc., 2001, 123: 12798-12801
|
[21] |
Dong W, Wu S, Chen D, Jiang X, Zhu C. Preparation of α-Fe2O3 nanoparticles by sol-gel process with inorganic iron salt [J]. Chem. Let., 2000, 5: 496-497
|
[22] |
Feltin I V, Peleni M P. New technique for synthesizing iron ferrite magnetic nanosized particles [J]. Langmuir, 1997, 13: 3927-3933
|
[23] |
Grimm S, Schultz M, Barth S. Flame pyrolysis—a preparation route for ultrafine pure γ-Fe2O3 powders and the control of their particle size and properties [J]. Mater. Sci., 1997, 32: 1083-1092
|
[24] |
Oda M, Setoguchi K. Preparation and application of ultrafine particles [J]. Mater. Sci. Technol., 1997, 13: 249-254
|
[25] |
Hyo K, Hee C R. Preparation of γ-Fe2O3 ultra-fine powders by laser vapor-phase reaction [J]. Mater. Sci. Lett., 1995, 14 (9): 1335-1337
|
[26] |
Wu Donghui (吴东辉), Hua Ping (华平), Zhang Haijun (张海军), Shi Xinyu (施新宇). Quick synthesis of maghemit by pyrolysis of ferrous hydroxide with microwave irradiation [J]. Materials Review (材料导报), 2007, 21 (2): 157-158
|
[27] |
Huang Haifeng (黄海凤), Zhang Feng (张峰), Lu Hanfeng (卢晗锋), Chen Yinfei (陈银飞). Effect of preparation methods on structures and performance of MnOx/TiO2 catalyst for low-temperature NH3-SCR [J]. CIESC Journal (化工学报), 2010, 61 (1): 80-85
|
[28] |
Sahoo S K, Mohapatra M, Pandey B, Verma H C, Das R P, Anand S. Preparation and characterization of α-Fe2O3-CeO2 composite [J]. Materials Characterization, 2009, 60 (5): 425-431
|
[29] |
Ma Fei (马飞), Cao Linhong (曹林洪), Jiang Xiaodong (蒋晓东), Ye Xin (叶鑫), Zhou Xinda (周信达), Huang Jin (黄进). Influence of feeding methods on synthesis of YAG nano-powers by co-precipitation method [J]. Journal of Synthetic Crystals (人工晶体学报), 2013, 42 (2): 262-271
|
[30] |
Yang S, Guo Y, Yan N, Wu D, He H, Qu Z, Yang C, Zhou Q, Jia J. Nanosized cation-deficient Fe-Ti spinel: a novel magnetic sorbent for elemental mercury capture from flue gas [J]. ACS Applied Materials & Interfaces, 2011, 3 (2): 209-217
|
[31] |
Zou Peng (邹鹏). Study on modification of V2O5/TiO2 catalyst in SCR flue gas denitrification [D]. Jinan: Shandong University, 2012
|
[32] |
Pierotti R A, Rouquérol J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry, 1985, 57 (4): 603-619
|
[33] |
Lü Gang (吕刚), Song Chonglin (宋崇林), Bin Feng (宾峰), Zhang Qingmao (张清茂), Pei Yiqiang (裴义强). Physicochemical properties and catalytic activity of vanadium contained SCR catalysts with different synthetic methods [J]. Journal of Engineering Thermophysics (工程热物理学报), 2009, 30 (12): 2157-2160
|
[34] |
Ma Hongqing (马宏卿), Yao Yan (姚燕), Ma Juan (马娟), Shen Boxiong (沈伯雄). Study on MnOx/Ti-PILC for NH3-SCR at low temperature [J]. Journal of Engineering Thermophysics (工程热物理学报), 2013, 34 (1): 164-167
|
[35] |
Koebel M, Elsener M, Madia G. Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperature [J]. Industrial & Engineering Chemistry Research, 2001, 40 (1): 52-59
|
[36] |
Sun Keqin (孙克勤), Zhong Qin (钟秦). DeNOx Technology and Industrial Applications of Coal-fired Power Plant (火电厂烟气脱硝技术及工程应用) [M]. Beijing: Chemical Industry Press, 2006: 78
|