[1] |
Lewis N S. Toward cost-effective solar energy use [J]. Nature, 2007, 315: 798-801.
|
[2] |
Sivula K, Le Formal F, Gratzel M. Solar water splitting: progress using hematite (a-Fe2O3) photoelectrodes [J]. Chem. Sus. Chem., 2011, 4: 432-449.
|
[3] |
Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gratzel M. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach [J]. Journal of the American Chemical Society, 2010, 132: 7436-7444.
|
[4] |
Sivula K, Le Formal F, Gratzel M. WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach [J]. Chemistry of Materials, 2009, 21: 2862-2867.
|
[5] |
Li J T, Cushing S K, Zheng P, Meng F, Chu D, Wu N. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array [J]. Nature Communications, 2013, 4: 2651.
|
[6] |
Brillet J, Gratzel M, Sivula K. Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting [J]. Nano Letters, 2010, 10: 4155-4160.
|
[7] |
Ling Y C, Wang G M, Wheeler D A, Zhang J Z, Li Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting [J]. Nano Letters, 2011, 11: 2119-2125.
|
[8] |
Shen S H, Jiang J G, Guo P H, Kronawitter C X, Mao S S, Guo L J. Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes [J]. Nano Energy, 2012, 1: 732-741.
|
[9] |
Li M, Deng J J, Pu A W, Zhang P P, Zhang H, Gao J, Hao Y Y, Zhong J, Sun X H. Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation [J]. Journal of Materials Chemistry A, 2014, 2: 6727-6733.
|
[10] |
Tilly S D, Cornuz M, Sivula K, Gratzel M. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis [J]. Angewandte Chemie-International Edition, 2010, 49: 6405-6408.
|
[11] |
Kim J Y, Magesh G, Youn D H, Jang J W, Kubota J, Domen K, Lee J S. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting [J]. Scientific Reports, 2013, 3: 2681.
|
[12] |
Qiu Y C, Leung S F, Zhang Q P, Hua B, Lin Q F, Wei Z H, Tsui K H, Zhang Y G, Yang S H, Fan Z Y. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures [J]. Nano Letters, 2014, 14: 2123-2129.
|
[13] |
Wang K X, Yu Z F, Liu V, Brongersma M L, Jaramillo T F, Fan S H. Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting [J]. ACS Photonics, 2014, 1: 235-240.
|
[14] |
Kim S J, Thomann I, Park J H, Kang J H, Vasudev A P, Brongersma M L. Light trapping for solar fuel generation with Mie resonances [J]. Nano Letters, 2014, 14: 1446-1452.
|
[15] |
Thomann I, Pinaud B A, Chen Z B, Clemens B M, Jaramillo T F, Brongersma M L. Plasmon enhanced solar-to-fuel energy conversion [J]. Nano Letters, 2011, 11: 3440-3446.
|
[16] |
Iandolo B, Antosiewicz T J, Hellman A, Zoric I. On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films [J]. Physical Chemistry Chemical Physics, 2013, 15: 4947-4954.
|
[17] |
Dotan H, Kfir O, Sharlin E, Blank O, Gross M, Dumchin I, Ankonina G, Rothschild A. Resonant light trapping in ultrathin films for water splitting [J]. Nature Materials, 2013, 12: 158-164.
|
[18] |
Murphy A B, Barnes P R F, Randeniya L K, Plumb I C, Grey I E, Horne M E, Glasscock J A. Efficiency of solar water splitting using semiconductor electrodes [J]. International Journal of Hydrogen Energy, 2006, 31: 1999-2017.
|
[19] |
Chen Z B, Jaramillo T F, Deutsch T G, Kleiman-Shwarsctein A, Forman A J, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland E W, Domen K, Miller E, Turner J A, Dinh H N. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols [J]. Journal of Materials Research, 2010, 25: 3-16.
|
[20] |
Kats M A, Blanchard R, Genevet P, Capasso F. Nanometre optical coatings based on strong interference effects in highly absorbing media [J]. Nature Materials, 2013, 12: 20-24.
|
[21] |
Taflove A, Hagness S C. Computational Eletrodynamics: the Finite-Difference Time-Domain Method[M]. Boston: Artech House, 2005.
|