化工学报 ›› 2016, Vol. 67 ›› Issue (1): 119-128.DOI: 10.11949/j.issn.0438-1157.20151033
肖文海1,2, 王颖1,2, 元英进1,2
收稿日期:
2015-07-01
修回日期:
2015-11-09
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
元英进
基金资助:
国家高技术研究发展计划重大项目(2012AA02A701)。
XIAO Wenhai1,2, WANG Ying1,2, YUAN Yingjin1,2
Received:
2015-07-01
Revised:
2015-11-09
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National High Technology Research and Development Program of China (2012AA02A701).
摘要:
合成生物学即生物学的工程化,因其打破了非生命化学物质和生命物质之间的界线,推动了生命科学由理解生命到创造生命的革新,因此对科学发展和技术创新起到了颠覆性作用,引发了化学品绿色制造的巨大变革。合成生物学作为化学品绿色制造的核心技术,主要从原料到菌种再到过程进行全链条设计和优化。本文首先从原料多样化、产品的合成与底盘细胞的选择这三个方面,综述了化学品绿色制造过程中合成生物学所起到的关键核心作用。在此基础上系统阐述了人工体系的设计与构建,并对今后如何通过发展合成生物学来促进化学品绿色制造,从“原料、底盘细胞、反应过程”这三个方面提出了相应的展望。
中图分类号:
肖文海, 王颖, 元英进. 化学品绿色制造核心技术——合成生物学[J]. 化工学报, 2016, 67(1): 119-128.
XIAO Wenhai, WANG Ying, YUAN Yingjin. Core technology in chemicals green manufacturing: synthetic biology[J]. CIESC Journal, 2016, 67(1): 119-128.
[1] | KEASLING J D. Synthetic biology for synthetic chemistry [J]. ACS Chem. Biol., 2008, 3: 64-76. |
[2] | KHALIL A S, COLLINS J J. Synthetic biology: applications come of age [J]. Nat. Rev. Genet., 2010, 11: 367-379. |
[3] | FORSTER A C, LEE S Y. Editorial: NextGen SynBio has arrived [J]. Biotechnol. J., 2012, 7: 872. |
[4] | PRINDLE A. Synthetic biology at all scales [J]. Trends Biotechnol., 2013, 31: 607-608. |
[5] | WANG Y H, WEI K Y, SMOLKE C D. Synthetic biology: advancing the design of diverse genetic systems [J]. Annu. Rev. Chem. Biomol. Eng., 2013, 4: 69-102. |
[6] | SINGH V. Recent advancements in synthetic biology: current status and challenges [J]. Gene, 2014, 535: 1-11. |
[7] | AGAPAKIS C M. Designing synthetic biology [J]. ACS Synth. Biol., 2014, 3: 121-128. |
[8] | CHAO R, YUAN Y, ZHAO H. Recent advances in DNA assembly technologies [J]. FEMS Yeast Res., 2014, doi: 10.1111/1567-1364. 12171. |
[9] | SHETTY R P, ENDY D, KNIGHT T F Jr. Engineering BioBrick vectors from BioBrick parts [J]. J. Biol. Eng., 2008, 2: 5. |
[10] | Registry of standard biological parts[EB/OL]. |
[2014] . http://www.webcitation.org/6O8Ha2b2B. | |
[11] | HAYDEN E C. Synthetic-biology firms shift focus [J]. Nature, 2014, 505: 598. |
[12] | U.S. Department of Defense. DOD science & technology priorities [EB/OL]. |
[2014] . http://community.apan.org/afosr/m/alea_stewart/135113/download.aspx. | |
[13] | U.S. Department of Energy. Synthetic biology, report to congress [EB/OL]. |
[2013] . http://www.synberc.org/sites/default/files/DOE% 20Synthetic%20Biology%20Report%20to%20Congress_Fnl.pdf. | |
[14] | U.S. National Academy of Sciences. Industrialization of biology: a roadmap to accelerate the advanced manufacturing of chemicals [EB/OL]. |
[2015] . http://www.nap.edu/catalog/19001. | |
[15] | The McKinsey Global Institute. Disruptive technologies: advances that will transform life, business, and the global economy[EB/OL]. |
[2013] . http://www.mckinsey.com/insights/business_technology/disruptive_technologies. | |
[16] | UK. Department for Business, Innovation & Skills. Eight great technologies: infographics [EB/OL]. |
[2013] . https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/249268/synthetic_biology_infographic.pdf. | |
[17] | NIELSEN J, FUSSENEGGER M, KEASLING J, et al. Engineering synergy in biotechnology [J]. Nat. Chem. Biol., 2014, 10: 319-322. |
[18] | JULLESSON D, DAVID F, PFLEGER B, et al. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals [J]. Biotechnol. Adv., 2015, doi: 10.1016/j.biotechadv. 2015.02.011. |
[19] | WEI N, OH E J, MILLION G, et al. Simultaneous utilization of cellobiose, xylose, and acetic acid from Lignocellulosic biomass for biofuel production by an engineered yeast platform [J]. ACS Synth. Biol., 2015, 4: 707-713. |
[20] | EITEMAN M A, LEE S A, ALTMAN E. A co-fermentation strategy to consume sugar mixtures effectively [J]. J. Biol. Eng., 2008, 2: 3. |
[21] | MIRA N P, PALMA M, GUERREIRO J F, et al. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid [J]. Microb. Cell Fact., 2010, 9: 79. |
[22] | KNOTHE G. Biodiesel and renewable diesel: a comparison progress in energy and combustion [J]. Science, 2010, 36: 364-373. |
[23] | HOOK S E, WRIGHT A D, MCBRIDE B W. Methanogens: methane producers of the rumen and mitigation strategies [J]. Archaea, 2010, 2010: 945785. |
[24] | GOYAL N, WIDIASTUTI H, KARIMI I A, et al. A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane [J]. Mol. Biosyst., 2014, 10: 1043-1054. |
[25] | BOWMAN J P, SLY L I, STACKEBRANDT E. The phylogenetic position of the family Methylococcaceae [J]. Int. J. Syst. Bacteriol., 1995, 45: 182-185. |
[26] | PIEJA A J, ROSTKOWSKI K H, CRIDDLE C S. Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria [J]. Microb. Ecol., 2011, 62: 564-573. |
[27] | PIEJA A J, SUNDSTROM E R, CRIDDLE C S. Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP [J]. Appl. Environ. Microbiol., 2011, 77: 6012-6019. |
[28] | PIEJA A J, SUNDSTROM E R, CRIDDLE C S. Cyclic alternating methane and nitrogen limitation increases PHB production in a methanotrophic community [J]. Bioresour. Technol., 2012, 107: 385-392. |
[29] | XIONG M, SCHNEIDERMAN D K, BATES F S, et al. Scalable production of mechanically tunable block polymers from sugar [J]. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: 8357-8362. |
[30] | YAO Y F, WANG C S, QIAO J, et al. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway [J]. Metab. Eng., 2013, 19: 79-87. |
[31] | INSOMPHUN C, XIE H, MIFUNE J, et al. Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha [J]. Metab. Eng., 2015, 27: 38-45. |
[32] | AJIKUMAR, P K., XIAO W H, TYO K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330: 70-74. |
[33] | LEONARD E, AJIKUMAR P K, THAYER K, et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control [J]. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 13654-13659. |
[34] | SZCZEBARA F M, CHANDELIER C, VILLERET C, et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast [J]. Nat. Biotechnol., 2003, 21: 143-149. |
[35] | BREITLING R, TAKANO E. Synthetic biology advances for pharmaceutical production [J]. Curr. Opin. Biotechnol., 2015, 35C: 46-51. |
[36] | CARTER O A, PETERS R J, CROTEAU R. Monoterpene biosynthesis pathway construction in Escherichia coli [J]. Phytochemistry, 2003, 64: 425-433. |
[37] | CHANG M C, EACHUS R A, TRIEU W, et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s [J]. Nat. Chem. Biol., 2007, 3: 274-277. |
[38] | PADDON C J, KEASLING J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development [J]. Nat. Rev. Microbiol., 2014, 12: 355-367. |
[39] | HONG K K, NIELSEN J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries [J]. Cell Mol. Life Sci., 2012, 69: 2671-2690. |
[40] | CASPETA L, CHEN Y, GHIACI P, et al. Biofuels. Altered sterol composition renders yeast thermotolerant [J]. Science, 2014, 346: 75-78. |
[41] | SHONG J, DIAZ M R, COLLINS C H. Towards synthetic microbial consortia for bioprocessing [J]. Curr. Opin. Biotechnol., 2012, 23: 798-802. |
[42] | ZHOU K, QIAO K, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products [J]. Nat. Biotechnol., 2015, 33: 377-383. |
[43] | LUO Y, LI B Z, LIU D, et al. Engineered biosynthesis of natural products in heterologous hosts [J]. Chem. Soc. Rev., 2015, doi: 10.1039/c5cs00025d. |
[44] | FAN L H, ZHANG Z J, YU X Y, et al. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production [J]. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 13260-13265. |
[45] | QI H, LI B Z, ZHANG W Q, et al. Modularization of genetic elements promotes synthetic metabolic engineering [J]. Biotechnol. Adv., 2015, doi: 10.1016/j.biotechadv.2015.04.002. |
[46] | ELLIS T, ADIE T, BALDWIN G S. DNA assembly for synthetic biology: from parts to pathways and beyond [J]. Integr. Biol. (Camb), 2011, 3: 109-118. |
[47] | ZHOU Y J, GAO W, RONG Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production [J]. J. Am. Chem. Soc., 2012, 134: 3234-3241. |
[48] | DUEBER J E, WU G C, MALMIRCHEGINI G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux [J]. Nat. Biotechnol., 2009, 27: 753-759. |
[49] | JIANG W, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems [J]. Nat. Biotechnol., 2013, 31: 233-239. |
[50] | BAO Z, XIAO H, LIANG J, et al. Homology-Integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae [J]. ACS Synth. Biol., 2015, 4: 585-594. |
[51] | SANDER J D, JOUNG J K. CRISPR-Cas systems for editing, regulating and targeting genomes [J]. Nat. Biotechnol., 2014, 32: 347-355. |
[52] | WANG H H, ISAACS F J, CARR P A, et al. Programming cells by multiplex genome engineering and accelerated evolution [J]. Nature, 2009, 460: 894-898. |
[53] | DAVID F, SIEWERS V. Advances in yeast genome engineering [J]. FEMS Yeast Res., 2014, doi: 10.1111/1567-1364.12200. |
[54] | DRAGOSITS M, MATTANOVICH D. Adaptive laboratory evolution—principles and applications for biotechnology [J]. Microb. Cell. Fact., 2013, 12: 64. |
[55] | PORTNOY V A, BEZDAN D, ZENGLER K. Adaptive laboratory evolution--harnessing the power of biology for metabolic engineering [J]. Curr. Opin. Biotechnol., 2011, 22: 590-594. |
[56] | REYES L H, GOMEZ J M, KAO K C. Improving carotenoids production in yeast via adaptive laboratory evolution [J]. Metab. Eng., 2014, 21: 26-33. |
[57] | DAHL R H, ZHANG F, ALONSO-GUTIERREZ J, et al. Engineering dynamic pathway regulation using stress-response promoters [J]. Nat. Biotechnol., 2013, 31: 1039-1046. |
[58] | KEASLING J D. Manufacturing molecules through metabolic engineering [J]. Science, 2010, 330: 1355-1358. |
[59] | ZHANG F, CAROTHERS J M, KEASLING J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids [J]. Nat. Biotechnol., 2013, 30: 354-359. |
[60] | HOLTZ W J, KEASLING J D. Engineering static and dynamic control of synthetic pathways [J]. Cell, 2010, 140: 19-23. |
[61] | CHAO R, YUAN Y, ZHAO H. Building biological foundries for next-generation synthetic biology [J]. Sci. China. Life Sci., 2015, doi: 10.1007/s11427-015-4866-8. |
[62] | YUAN L Z, ROUVIERE P E, LAROSSA R A, et al. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli [J]. Metab. Eng., 2006, 8: 79-90.oid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science. 2010, 330: 70-74. |
[33] | LEONARD E, AJIKUMAR P K, THAYER K, et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control[J]. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:13654-13659. |
[34] | SZCZEBARA F M, CHANDELIER C, VILLERET C, et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast[J]. Nat. Biotechnol., 2003, 21:143-149. |
[35] | BREITLING R, TAKANO E. Synthetic biology advances for pharmaceutical production[J]. Curr. Opin. Biotechnol., 2015, 35C:46-51. |
[36] | CARTER O A, PETERS R J, CROTEAU R. Monoterpene biosynthesis pathway construction in Escherichia coli[J]. Phytochemistry. 2003, 64:425-433. |
[37] | CHANG M C, EACHUS R A, TRIEU W, et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s [J]. Nat. Chem. Biol., 2007, 3:274-277. |
[38] | PADDON C J, KEASLING J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development[J]. Nat. Rev. Microbiol., 2014, 12:355-367. |
[39] | HONG K K, NIELSEN J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries[J]. Cell Mol. Life Sci., 2012, 69:2671-2690. |
[40] | CASPETA L, CHEN Y, GHIACI P, et al. Biofuels. Altered sterol composition renders yeast thermotolerant[J]. Science, 2014, 346:75-78. |
[41] | SHONG J, DIAZ M R, COLLINS C H. Towards synthetic microbial consortia for bioprocessing[J]. Curr. Opin. Biotechnol., 2012, 23:798-802. |
[42] | ZHOU K, QIAO K, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nat. Biotechnol., 2015, 33:377-383. |
[43] | LUO Y, LI B Z, LIU D, et al. Engineered biosynthesis of natural products in heterologous hosts[J]. Chem. Soc. Rev. 2015. doi:10.1039/c5cs00025d. |
[44] | FAN L H, ZHANG Z J, YU X Y, et al. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production[J]. Proc. Natl. Acad. Sci. U. S. A., 2012, 109:13260-13265. |
[45] | QI H, LI B Z, ZHANG W Q, et al. Modularization of genetic elements promotes synthetic metabolic engineering[J]. Biotechnol. Adv., 2015. doi:10.1016/j.biotechadv.2015.04.002. |
[46] | ELLIS T, ADIE T, BALDWIN G S. DNA assembly for synthetic biology: from parts to pathways and beyond[J]. Integr. Biol. (Camb), 2011, 3:109-118. |
[47] | ZHOU Y J, GAO W, RONG Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J. Am. Chem. Soc., 2012, 134:3234- 3241. |
[48] | DUEBER J E, WU G C, MALMIRCHEGINI G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nat. Biotechnol., 2009, 27:753-759. |
[49] | JIANG W, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nat. Biotechnol., 2013, 31:233-239. |
[50] | BAO Z, XIAO H, LIANG J, et al. Homology-Integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae[J]. ACS Synth. Biol., 2015, 4:585-594. |
[51] | SANDER J D, JOUNG J K. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nat. Biotechnol. 2014, 32:347-355. |
[52] | WANG H H, ISAACS F J, CARR P A, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460:894-898. |
[53] | DAVID F, SIEWERS V. Advances in yeast genome engineering[J]. FEMS Yeast Res., 2014. doi:10.1111/1567-1364.12200. |
[54] | DRAGOSITS M, MATTANOVICH D. Adaptive laboratory evolution--principles and applications for biotechnology[J]. Microb. Cell. Fact., 2013, 12:64. |
[55] | PORTNOY V A, BEZDAN D, ZENGLER K. Adaptive laboratory evolution--harnessing the power of biology for metabolic engineering[J]. Curr. Opin. Biotechnol., 2011, 22:590-594. |
[56] | REYES L H, GOMEZ J M, KAO K C. Improving carotenoids production in yeast via adaptive laboratory evolution[J]. Metab. Eng., 2014, 21:26-33. |
[57] | DAHL R H, ZHANG F, ALONSO-GUTIERREZ J, et al. Engineering dynamic pathway regulation using stress-response promoters[J]. Nat. Biotechnol., 2013, 31:1039-1046. |
[58] | KEASLING J D. Manufacturing molecules through metabolic engineering[J]. Science, 2010, 330:1355-1358. |
[59] | ZHANG F, CAROTHERS J M, KEASLING J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J]. Nat. Biotechnol., 2013, 30:354-359. |
[60] | HOLTZ W J, KEASLING J D. Engineering static and dynamic control of synthetic pathways[J]. Cell, 2010, 140:19-23. |
[61] | CHAO R, YUAN Y, ZHAO H. Building biological foundries for next-generation synthetic biology[J]. Sci. China. Life Sci. 2015. doi:10.1007/s11427-015-4866-8. |
[62] | YUAN L Z, ROUVIERE P E, LAROSSA R A, et al. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli[J]. Metab. Eng., 2006, 8:79-90. |
[1] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[2] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[3] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[4] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[5] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[6] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[7] | 黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711. |
[8] | 黄新烨, 张冶, 张书源, 陈振, 邱彤. 贝叶斯优化方法在需钠弧菌生产1,3-丙二醇中的应用[J]. 化工学报, 2022, 73(11): 5039-5046. |
[9] | 刘海波, 王楠, 刘洪周, 陈铁柱, 李建昌. 电压扰动对EAD代谢通量中微生物与关键酶活性的影响[J]. 化工学报, 2022, 73(10): 4603-4612. |
[10] | 王欣慧, 王颖, 姚明东, 肖文海. 维生素A生物合成的研究进展[J]. 化工学报, 2022, 73(10): 4311-4323. |
[11] | 吴延鹏, 栾珊珊, 苏伟, 邢奕, 钱付平. 钢铁厂原料堆粉尘无组织排放抑制技术进展[J]. 化工学报, 2021, 72(S1): 53-62. |
[12] | 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324. |
[13] | 柯蓝婷, 王远鹏, 郑艳梅, 李清彪. 生物甲烷系统的组分分析与综合评价[J]. 化工学报, 2021, 72(7): 3801-3813. |
[14] | 郑龙, 田佳鑫, 张泽鹏, 郭建, 朱晖, 谢慧翔, 何润泽, 洪文晶. 多肽药物制备工艺研究进展[J]. 化工学报, 2021, 72(7): 3538-3550. |
[15] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||