化工学报 ›› 2017, Vol. 68 ›› Issue (2): 485-495.DOI: 10.11949/j.issn.0438-1157.20161172
金玉龙, 赵柠, 程瑞华, 刘柏平
收稿日期:
2016-08-22
修回日期:
2016-10-20
出版日期:
2017-02-05
发布日期:
2017-02-05
通讯作者:
刘柏平
基金资助:
国家自然科学基金项目(21644011,21274040)。
JIN Yulong, ZHAO Ning, CHENG Ruihua, LIU Boping
Received:
2016-08-22
Revised:
2016-10-20
Online:
2017-02-05
Published:
2017-02-05
Supported by:
supported by the National Natural Science Foundation of China (21644011, 21274040).
摘要:
双峰聚乙烯因兼具优良的加工性能和优异的力学性能,被广泛应用于PE100、PE100RC等高等级管材的生产,其在聚乙烯市场中的地位越来越重要。目前工业上基本采用双釜串联工艺生产双峰聚乙烯,该工艺设备投资及能耗较高,且均被国外公司垄断。相比之下,单釜双峰工艺因采用双金属中心催化剂在单一反应器中生产双峰聚乙烯,其设备投资和操作费用更低,且更加绿色环保,因而成为近年来国内外研究的热点。综述了本课题组近期基于铬系催化剂开发的新型双金属中心双峰聚乙烯催化剂,同时对其他双金属中心聚乙烯催化剂进行了介绍,并对该领域的未来发展进行了展望。
中图分类号:
金玉龙, 赵柠, 程瑞华, 刘柏平. 双金属中心双峰聚乙烯催化剂研究进展[J]. 化工学报, 2017, 68(2): 485-495.
JIN Yulong, ZHAO Ning, CHENG Ruihua, LIU Boping. Research progress of bimetallic catalysts for bimodal polyethylene synthesis[J]. CIESC Journal, 2017, 68(2): 485-495.
[1] | 刘妍, 李旭慧, 刘照辉. 双峰聚乙烯的生产[J]. 化工科技, 2003, 11(3):53-57. LIU Y, LI X H, LIU Z H. Production of bimodal polyethylene[J]. Science &Technology in Chemical Industry, 2003, 11(3):53-57. |
[2] | BHM L L, ENDERLE H F, FLEISSNER M. The industrial synthesis of bimodal polyethylene grades with improved properties[J]. Studies in Surface Science & Catalysis, 1994, 89:351-363. |
[3] | 毕家林, 李连鹏, 胡建洪, 等. 国内外PE100级管材专用料的发展和应用概况[J]. 弹性体, 2014, 24(2):73-80. BI J L, LI L P, HU J H, et al. Research and application status of special materials for PE100 pipe at home and abroad[J]. China Elastomerics, 2014, 24(2):73-79. |
[4] | ALT F P, BHM L L, ENDERLE H F, et al. Bimodal polyethylene-interplay of catalyst and process[J]. Macromolecular Symposia, 2001, 163(1):135-144. |
[5] | LIU H T, DAVEY C R, SHIRODKAR P P. Bimodal polyethylene products from UNIPOLTM single gas phase reactor using engineered catalysts[J]. Macromolecular Symposia, 2003, 195(1):309-316. |
[6] | MCDANIEL M P. A review of the Phillips supported chromium catalyst and its commercial use for ethylene polymerization[J]. Advances in Catalysis, 2010, 53(53):123-606. |
[7] | CHENG R, XUE X, LIU W, et al. Novel SiO2-supported chromium oxide (Cr)/vanadium oxide (V) bimetallic catalysts for production of bimodal polyethylene[J]. Macromolecular Reaction Engineering, 2015, 9(5):462-472. |
[8] | MATTA A, ZENG Y, TANIIKE T, et al. Vanadium-modified bimetallic Phillips catalyst with high branching ability for ethylene polymerization[J]. Macromolecular Reaction Engineering, 2012, 6(8):346-350. |
[9] | CZAJA K, BIALEK M. Organometallic vanadium-based heterogeneous catalysts for ethylene polymerization. Study of the deactivation process[J]. Macromolecular Rapid Communications, 1998, 19(3):163-166. |
[10] | DESLAURIERS P J, MCDANIEL M P. Short chain branching profiles in polyethylene from the Phillips Cr/silica catalyst[J]. Journal of Polymer Science Part A Polymer Chemistry, 2007, 45(15):3135-3149. |
[11] | BIAAEK M, CZAJA K. The effect of the comonomer on the copolymerization of ethylene with long chain α-olefins using Ziegler-Natta catalysts supported on MgCl2(THF)2[J]. Polymer, 2000, 41(22):7899-7904. |
[12] | KOTEN G V, HAGEN H, BOERSMA J. Homogeneous vanadium-based catalysts for the Ziegler-Natta polymerization of α-olefins[J]. Chemical Society Reviews, 2002, 31(6):357-364. |
[13] | 董璇. 钛改性、铝改性负载型铬钒双中心聚乙烯催化剂的研究[D]. 上海:华东理工大学, 2013. DONG X. Ti-and Al-modified supported Cr-V catalysts for polyethylene[D]. Shanghai:East China University of Science and Technology, 2013. |
[14] | 孙巧巧. 新型氟改性、钛氟改性硅胶负载型铬钒双中心聚乙烯催化剂研究[D]. 上海:华东理工大学, 2013. SUN Q Q. Study of F-and Ti-modified Cr-V bimetallic Phillips catalysts for ethylene polymerization[D]. Shanghai:East China University of Science and Technology, 2013. |
[15] | ZHAO N, CHENG R, HE X, et al. A novel SiO2-supported Cr-V bimetallic catalyst making polyethylene and ethylene/1-hexene copolymers with bimodal molecular weight distribution[J]. Macromolecular Chemistry and Physics, 2014, 215(18):1753-1766. |
[16] | JANIMAK J J, STEVENS G C. Inter-relationships between tie-molecule concentrations, molecular characteristics and mechanical properties in metallocene catalysed medium density polyethylenes[J]. Journal of Materials Science, 2001, 36(8):1879-1884. |
[17] | KRISHNASWAMY R K, YANG Q, FERNANDEZ-BALLESTER L, et al. Effect of the distribution of short-chain branches on crystallization kinetics and mechanical properties of high-density polyethylene[J]. Macromolecules, 2008, 41(5):1693-1704. |
[18] | ZHAO N, CHENG R, HE X, et al. Novel SiO2-supported silyl-chromate(Cr)/imido-vanadium(V) bimetallic catalysts producing polyethylene and ethylene/1-hexene copolymers with bimodal molecular-weight distribution[J]. Macromolecular Chemistry and Physics, 2014, 215(15):1434-1445. |
[19] | HERNANDEZ-VAQUERO ALVAREZ J L, DEL AMO F B, FERNANDEZ SIBON F J, et al. Process for producing bimodal polyethylene:EP1153943[P]. 2004-11-24. |
[20] | YAMAMOTO K, ISHIHAMA Y, SAKATA K. Preparation of bimodal HDPEs with metallocene on Cr-montmorillonite support[J]. Journal of Polymer Science Part A Polymer Chemistry, 2010, 48(17):3722-3728. |
[21] | MORENO J, GRIEKEN R V, CARRERO A, et al. Development of novel chromium oxide/metallocene hybrid catalysts for bimodal polyethylene[J]. Polymer, 2011, 52(9):1891-1899. |
[22] | PAREDES B, GRIEKEN R V, CARRERO A, et al. Chromium oxide/metallocene binary catalysts for bimodal polyethylene:hydrogen effects[J]. Chemical Engineering Journal, 2012, 213(12):62-69. |
[23] | CANN K, APECETCHE M, ZHANG M. Comparison of silyl chromate and chromium oxide based olefin polymerization catalysts[J]. Macromolecular Symposia, 2004, 213(1):29-36. |
[24] | FANG Y, WEI X, MAN H, et al. Novel SiO2-supported chromium catalyst bearing new organo-siloxane ligand for ethylene polymerization[J]. Journal of Molecular Catalysis A Chemical, 2006, 247(1):240-247. |
[25] | ZHANG S, DONG Q, CHENG R, et al. A novel SiO2-supported inorganic and organic hybrid chromium-based catalyst for ethylene polymerization[J]. Journal of Molecular Catalysis A Chemical, 2012, 358:10-22. |
[26] | ZHANG S, CHENG R, DONG Q, et al. Ethylene/1-hexene copolymerization with a novel SiO2-supported inorganic and organic hybrid chromium-based catalyst[J]. Macromolecular Reaction Engineering, 2013, 7(6):254-266. |
[27] | HUANG R, KONING C E, CHADWICK J C. Synergetic effect of a nickel diimine in ethylene polymerization with immobilized Fe-, Cr-, and Ti-based catalysts on MgCl2 supports[J]. Macromolecules, 2007, 40(9):3021-3029. |
[28] | KUREK A, MARK S, ENDERS M, et al. Two-site silica supported Fe/Cr catalysts for tailoring bimodal polyethylenes with variable content of UHMWPE[J]. Journal of Molecular Catalysis A Chemical, 2014, 383/384:53-57. |
[29] | STÜRZEL M, YI T, ENDERS M, et al. Graphene-supported dual-site catalysts for preparing self-reinforcing polyethylene reactor blends containing UHMWPE nanoplatelets and in situ UHMWPE shish-kebab nanofibers[J]. Macromolecules, 2014, 47(15):4979-4986. |
[30] | KUREK A, XALTER R, STÜRZEL M, et al. Silica nanofoam (NF) supported single-and dual-site catalysts for ethylene polymerization with morphology control and tailored bimodal molar mass distributions[J]. Macromolecules, 2013, 46(23):9197-9201. |
[31] | BOHM L L, ENDERLE H F, FLEIFβNER M. High-density polyethylene pipe resins[J]. Advanced Materials, 1992, 4(3):234-238. |
[32] | 吕占霞, 李杨, 魏春阳, 等. 宽或双峰分子量分布HDPE的研制(Ⅰ):双金属复合催化剂的制备及其催化乙烯聚合反应动力学[J]. 合成树脂及塑料, 2000, 17(5):14-18. LÜ Z X, LI Y, WEI C Y, et al. Study on wide or bimodal molecular weight distribution HPDE(Ⅰ):Preparation of bimetallic composite catalyst and its reaction kinetics in ethylene catalytic polymerization[J]. China Synthetic Resin and Plastics, 2000, 17(5):14-18. |
[33] | AHMADI M, JAMJAH R, NEKOOMANESH M, et al. Ziegler-Natta/metallocene hybrid catalyst for ethylene polymerization[J]. Macromolecular Reaction Engineering, 2007, 1(6):604-610. |
[34] | JIN S C, HAN S C, KO Y G, et al. Preparation of the Ziegler-Natta/metallocene hybrid catalysts on SiO2/MgCl2 bisupport and ethylene polymerization[J]. Journal of Molecular Catalysis A Chemical, 1999, 144(1):61-69. |
[35] | 孙爱武, 韩世敏, 胡友良. MgCl2负载双金属复合催化剂制备宽分子量分布聚乙烯[J]. 高分子学报, 1999, 1(6):748-751. SUN A W, HAN S M, HU Y L. Study on the preparation of broad molecular weight distribution polyethylene with MgCl2-supported bimetallic complex catalysts Ti(OBu)Cl3/Et(Ind)2ZrCl2 and Ti(OBu)Cl3Cp2ZrCl2[J]. Acta Polymerica Sinica, 1999, 1(6):748-751. |
[36] | HAN S C, CHOI Y H, LEE W Y. Characteristics of ethylene polymerization over Ziegler-Natta/metallocene catalysts:comparison between hybrid and mixed catalysts[J]. Catalysis Today, 2000, 63(2/3/4):523-530. |
[37] | HAN S C, JIN S C, LEE W Y. Control of molecular weight distribution for polyethylene catalyzed over Ziegler-Natta/metallocene hybrid and mixed catalysts[J]. Journal of Molecular Catalysis A Chemical, 2000, 159:203-213. |
[38] | 历伟, 吴晶, 杜丽娟, 等. 无机/有机复合载体负载TiCl3/(n-BuCp)2ZrCl2复合催化剂用于宽峰聚乙烯的制备[J]. 化工学报, 2010, 61(5):1127-1136. LI W, WU J, DU L J, et al. Novel organic/inorganic support for immobilizing TiCl3/(n-BuCp)2ZrCl2 catalyst to prepare wide distribution polyethylene[J]. CIESC Journal, 2010, 61(5):1127-1136. |
[39] | JIANG B, YANG Y, DU L, et al. Advanced catalyst technology for broad/bimodal polyethylene, achieved by polymer-coated particles supporting hybrid catalyst[J]. Industrial & Engineering Chemistry Research, 2013, 52(7):2501-2509. |
[40] | DU L, LI W, FAN L, et al. Hybrid titanium catalyst supported on core-shell silica/poly(styrene-co-acrylic acid) carrier[J]. Journal of Applied Polymer Science, 2010, 118(3):1743-1751. |
[41] | AHMADJO S, DEHGHANI S, ZOHURI G H, et al. Thermal behavior of polyethylene reactor alloys polymerized by Ziegler-Natta/late transition metal hybrid catalyst[J]. Macromolecular Reaction Engineering, 2014, 9(1):8-18. |
[42] | 刘东兵, 王洪涛, 邱波, 等. 非茂单活性中心-BCG复合催化剂用于制备双峰高密度聚乙烯[J]. 石油化工, 2007, 36(9):901-906. LIU D B, WANG H T, QIU B, et al. Preparation of bimodal high density polyethylene with non-metallocene single site-BCG composite-catalyst[J]. Petrochemical Technology, 2007, 36(9):901-906. |
[43] | LI W, GUAN C, XU J, et al. Bimodal/broad polyethylene prepared in a disentangled state[J]. Industrial & Engineering Chemistry Research, 2014, 53(3):1088-1096. |
[44] | WANG D, ZHAO Z, MIKENAS T B, et al. A new high-performance Ziegler-Natta catalyst with vanadium active component supported on highly-dispersed MgCl2 for producing polyethylene with broad/bimodal molecular weight distribution[J]. Polymer Chemistry, 2012, 3(9):2377-2382. |
[45] | JIANG T, GAO X L. Preparation of polyethylene with vanadium/titanium bi-metal Ziegler-Natta catalysts[J]. Applied Mechanics and Materials, 2014, 665:335-338. |
[46] | CHANG H S, KANG Y K. Method for producing a Ti/V supported catalyst for ethylene polymerization and ethylene/α-olefin copolymerization:US6214759[P]. 2001-04-10. |
[47] | HAN T K, HONG K C, DONG W J, et al. Control of molecular weight and molecular weight distribution in ethylene polymerization with metallocene catalysts[J]. Macromolecular Chemistry & Physics, 1995, 196:2637-2647. |
[48] | HEILAND K, KAMINSKY W. Comparison of zirconocene and hafnocene catalysts for the polymerization of ethylene and 1-butene[J]. Die Makromolekulare Chemie, 1992, 193(3):601-610. |
[49] | HONG S C, MIHAN S, LILGE D, et al. Immobilized Me2Si(C5Me4) (N-tBu)TiCl2/(nBuCp)2ZrCl2 hybrid metallocene catalyst system for the production of poly(ethylene-co-hexene) with pseudo-bimodal molecular weight and inverse comonomer distribution[J]. Polymer Engineering & Science, 2007, 47(2):131-139. |
[50] | D'AGNILLO L, SOARES J B P, PENLIDIS A. Controlling molecular weight distributions of polyethylene by combining soluble metallocene/MAO catalysts[J]. Journal of Polymer Science Part A Polymer Chemistry, 2000, 36(5):831-840. |
[51] | KIM J D, SOARES J B P, REMPEL G L. Use of hydrogen for the tailoring of the molecular weight distribution of polyethylene in a bimetallic supported metallocene catalyst system[J]. Macromolecular Rapid Communications, 1998, 19(4):197-199. |
[52] | KIM J D, SOARES J B P, REMPEL G L. Synthesis of tailor-made polyethylene through the control of polymerization conditions using selectively combined metallocene catalysts in a supported system[J]. Journal of Polymer Science Part A Polymer Chemistry, 1999, 37(3):331-339. |
[53] | SOARES J B P, KIM J D. Copolymerization of ethylene and α-olefins with combined metallocene catalysts(I):A formal criterion for molecular weight bimodality[J]. Journal of Polymer Science Part A Polymer Chemistry, 2000, 38(9):1408-1416. |
[54] | CHOI Y, SOARES J B P. Supported hybrid early and late transition metal catalysts for the synthesis of polyethylene with tailored molecular weight and chemical composition distributions[J]. Polymer, 2010, 51(21):4713-4725. |
[55] | MEHDIABADI S, CHOI Y, SOARES J B P. Synthesis of polyolefins with combined single-site catalysts[J]. Macromolecular Symposia, 2012, 313/314(1):8-18. |
[56] | ALOBAIDI F, ZHU S. Synthesis of reactor blend of linear and branched polyethylene using metallocene/Ni-diimine binary catalyst system in a single reactor[J]. Journal of Applied Polymer Science, 2005, 96(6):2212-2217. |
[57] | ZHAO Y, WANG L, YU H, et al. Facile preparation of bimodal polyethylene with tunable molecular weight distribution from ethylene polymerization catalyzed by binary catalytic system in the presence of diethyl zinc[J]. Journal of Polymer Research, 2014, 21(6):1-11. |
[58] | ARRIOLA D J, CARNAHAN E M, HUSTAD P D, et al. Catalytic production of olefin block copolymers via chain shuttling polymerization[J]. Science, 2006, 312(5774):714-719. |
[59] | SUN T, QI W, FAN Z. Selective activation of metallic center in heterobinuclear cobalt and nickel complex in ethylene polymerization[J]. Polymer, 2010, 51(14):3091-3098. |
[60] | WANG S, LIU D, XU R, et al. Bimodal PE prepared with combined iron (Ⅱ) and nickel (Ⅱ) olefin polymerization catalysts[J]. Chinese Science Bulletin, 2005, 51(1):115-116. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[7] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[8] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[9] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[10] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[11] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[14] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[15] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||