化工学报 ›› 2018, Vol. 69 ›› Issue (1): 116-127.DOI: 10.11949/j.issn.0438-1157.20171231
蔡达理, 张晨曦, 侯一林, 陈兆辉, 王垚, 崔宇, 魏飞
收稿日期:
2017-09-08
修回日期:
2017-12-12
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
魏飞
基金资助:
国家重点研发计划项目(2016YFA0200102)。
CAI Dali, ZHANG Chenxi, HOU Yilin, CHEN Zhaohui, WANG Yao, CUI Yu, WEI Fei
Received:
2017-09-08
Revised:
2017-12-12
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171231
Supported by:
supported by the National Key Research and Development Program of China (2016YFA0200102).
摘要:
现代新型煤化工是我国当今基础有机化学工业发展的新亮点,也是世界化工界的又一次革命。煤制化学品路线经历气化、变换、甲醇合成、甲醇制烃类等过程,其中,最为重要的是分子筛上甲醇转化的过程。本文综述了分子筛上甲醇转化的相关研究,一方面从ZSM-5上甲醇转化的生成烃池及烯烃的热力学机制和产物分布出发,介绍了多甲基苯生成烯烃热力学平衡模型和其中的芳烃池生成烯烃热力学机制,另一方面,介绍了基于Ising模型的分子筛离散拓扑结构模型。利用分子筛孔道堵塞与围棋中“气”的有无的类似性,能够很好地再现SAPO-34上的相变失活现象和不均匀的积炭分布现象。以模型为指导,介绍了一些分子筛多级结构构筑的工作,这些工作很好地提升了催化剂选择性和寿命。这些概念对于准确理解甲醇在分子筛上的反应与失活机制、产品分布及提高选择性有指导意义。
中图分类号:
蔡达理, 张晨曦, 侯一林, 陈兆辉, 王垚, 崔宇, 魏飞. 分子筛上甲醇转化过程的热力学和拓扑结构[J]. 化工学报, 2018, 69(1): 116-127.
CAI Dali, ZHANG Chenxi, HOU Yilin, CHEN Zhaohui, WANG Yao, CUI Yu, WEI Fei. Thermodynamics and topology in methanol conversion process over zeolites[J]. CIESC Journal, 2018, 69(1): 116-127.
[1] | OLAH G A. Beyond oil and gas:the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18):2636-2639. |
[2] | ISING E. Beitrag zur theorie des ferromagnetismus[J]. Zeitschrift für Physik, 1925, 31(1):253-258. |
[3] | ONSAGER L. Crystal statistics(Ⅰ):A two-dimensional model with an order-disorder transition[J]. Physical Review, 1944, 65(3/4):117-149. |
[4] | YANG C N. The spontaneous magnetization of a two-dimensional Ising model[J]. Physical Review, 1952, 85(5):808-816. |
[5] | ZHOU H, WANG Y, WEI F, et al. Kinetics of the reactions of the light alkenes over SAPO-34[J]. Applied Catalysis A:General, 2008, 348(1):135-141. |
[6] | 王垚, 狄佐星, 李玉新, 等. 用于甲醇制烯烃的非均相催化反应器评述[J]. 化工学报, 2014, 65(7):2474-2484. WANG Y, DI Z X, LI Y X, et al. Multiphase catalytic reactors for methanol-to-olefins[J]. CIESC Journal, 2014, 65(7):2474-2484. |
[7] | JIA Z, CAI D, CUI Y, et al. Reaction and deactivation of propylene over SAPO-34 at low temperature[J]. Catalysis Today, 2018, 301:244-247. |
[8] | JIA Z, ZHANG C, CAI D, et al. The analysis of hot spots in large scale fluidized bed reactors[J]. RSC Advances, 2017, 7(33):20186-20191. |
[9] | ZHU J, CUI Y, NAWAZ Z, et al. In situ synthesis of SAPO-34 zeolites in Kaolin microspheres for a fluidized methanol or dimethyl ether to olefins process[J]. Chinese Journal of Chemical Engineering, 2010, 18(6):979-987. |
[10] | WEI Y, LI J, YUAN C, et al. Generation of diamondoid hydrocarbons as confined compounds in SAPO-34 catalyst in the conversion of methanol[J]. Chemical Communications, 2012, 48(25):3082. |
[11] | CHEN J, LI J, WEI Y, et al. Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction[J]. Catalysis Communications, 2014, 46:36-40. |
[12] | XU S, ZHENG A, WEI Y, et al. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites[J]. Angewandte Chemie International Edition, 2013, 52(44):11564-11568. |
[13] | QI L, LI J, WEI Y, et al. Role of naphthalene during the induction period of methanol conversion on HZSM-5 zeolite[J]. Catal. Sci. Technol., 2016, 6(11):3737-3744. |
[14] | WEI Y, YUAN C, LI J, et al. Coke formation and carbon atom economy of methanol-to-olefins reaction[J]. ChemSusChem, 2012, 5(5):906-912. |
[15] | TIAN P, WEI Y, YE M, et al. Methanol to olefins (MTO):from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3):1922-1938. |
[16] | YE M, LI H, ZHAO Y, et al. Chapter Five-MTO Processes Development:The Key of Mesoscale Studies[M]//MARIN G B, LI J. Advances in Chemical Engineering. Academic Press, 2015:279-335. |
[17] | LI M, WANG Y, BAI L, et al. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process[J]. Applied Catalysis A:General, 2017, 531:203-211. |
[18] | LIANG T, CHEN J, QIN Z, et al. Conversion of methanol to olefins over H-ZSM-5 zeolite:reaction pathway is related to the framework aluminum siting[J]. ACS Catalysis, 2016:7311-7325. |
[19] | LI J, WEI Z, CHEN Y, et al. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites[J]. Journal of Catalysis, 2014, 317:277-283. |
[20] | WEI Z, CHEN Y, LI J, et al. Stability and reactivity of intermediates of methanol related reactions and C-C bond formation over H-ZSM-5 acidic catalyst:a computational analysis[J]. The Journal of Physical Chemistry C, 2016, 120(11):6075-6087. |
[21] | WEI Z, CHEN Y, LI J, et al. Methane formation mechanism in the initial methanol-to-olefins process catalyzed by SAPO-34[J]. Catal. Sci. Technol., 2016, 6(14):5526-5533. |
[22] | PEREA D E, ARSLAN I, LIU J, et al. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography[J]. Nature Communications, 2015, 6:7589. |
[23] | MÜLLER S, LIU Y, VISHNUVARTHAN M, et al. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. Journal of Catalysis, 2015, 325:48-59. |
[24] | SUN X, MUELLER S, SHI H, et al. On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5[J]. Journal of Catalysis, 2014, 314:21-31. |
[25] | SUN X, MUELLER S, LIU Y, et al. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5[J]. Journal of Catalysis, 2014, 317:185-197. |
[26] | WANG Y, XIAO F. Understanding mechanism and designing strategies for sustainable synthesis of zeolites:a personal story[J]. The Chemical Record, 2016, 16(3):1054-1066. |
[27] | OTOMO R, MÜLLER U, FEYEN M, et al. Development of a post-synthetic method for tuning the Al content of OSDA-free beta as a catalyst for conversion of methanol to olefins[J]. Catal. Sci. Technol., 2016, 6(3):713-721. |
[28] | SHENG N, CHU Y, XIN S, et al. Insights of the crystallization process of molecular sieve AlPO4-5 prepared by solvent-free synthesis[J]. Journal of the American Chemical Society, 2016, 138(19):6171-6176. |
[29] | ZHANG H, WANG L, ZHANG D, et al. Mesoporous and Al-rich MFI crystals assembled with aligned nanorods in the absence of organic templates[J]. Microporous and Mesoporous Materials, 2016, 233:133-139. |
[30] | MA Y, CAI D, LI Y, et al. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5:an atomic Cs-corrected STEM analysis study[J]. RSC Advances, 2016, 6(78):74797-74801. |
[31] | MA Y, WANG N, QIAN W, et al. Molded MFI nanocrystals as a highly active catalyst in a methanol-to-aromatics process[J]. RSC Adv., 2016, 6(84):81198-81202. |
[32] | QIN Z, MELINTE G, GILSON J, et al. The mosaic structure of zeolite crystals[J]. Angewandte Chemie International Edition, 2016, 55(48):15049-15052. |
[33] | LI M, ZHOU Y, JU C, et al. Remarkable increasing of ZSM-5 lifetime in methanol to hydrocarbon reaction by post engineering in fluoride media[J]. Applied Catalysis A:General, 2016, 512:1-8. |
[34] | STÖCKER M. Methanol-to-hydrocarbons:catalytic materials and their behavior[J]. Microporous and Mesoporous Materials, 1999, 29(1/2):3-48. |
[35] | CHU C, CHANG C D. Methanol conversion to olefins over ZSM-5(Ⅱ):Olefin distribution[J]. Journal of Catalysis, 1984, 86(2):297-300. |
[36] | ONO Y, MORI T. Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1981, 77(9):2209. |
[37] | SVELLE S, JOENSEN F, NERLOV J, et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:ethene formation is mechanistically separated from the formation of higher alkenes[J]. Journal of the American Chemical Society, 2006, 128(46):14770-14771. |
[38] | LIU Y, MÜLLER S, BERGER D, et al. Formation mechanism of the first carbon-carbon bond and the first olefin in the methanol conversion into hydrocarbons[J]. Angewandte Chemie International Edition, 2016, 55(19):5723-5726. |
[39] | FICKEL D W, SABNIS K D, LI L, et al. Chloromethane to olefins over H-SAPO-34:probing the hydrocarbon pool mechanism[J]. Applied Catalysis A:General, 2016, 527:146-151. |
[40] | KHARE R, BHAN A. Mechanistic studies of methanol-to-hydrocarbons conversion on diffusion-free MFI samples[J]. Journal of Catalysis, 2015, 329:218-228. |
[41] | KHARE R, ARORA S S, BHAN A. Implications of cofeeding acetaldehyde on ethene selectivity in methanol-to-hydrocarbons conversion on MFI and its mechanistic interpretation[J]. ACS Catalysis, 2016:2314-2331. |
[42] | WANG C, WANG Y, XIE Z. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles:are olefins themselves the dominating hydrocarbon pool species?[J]. Journal of Catalysis, 2013, 301:8-19. |
[43] | WANG C, WANG Y, DU Y, et al. Computational insights into the reaction mechanism of methanol-to-olefins conversion in H-ZSM-5:nature of hydrocarbon pool[J]. Catalysis Science & Technology, 2016, 6(9):3279-3288. |
[44] | BJORGEN M, SVELLE S, JOENSEN F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:on the origin of the olefinic species[J]. Journal of Catalysis, 2007, 249(2):195-207. |
[45] | ARSTAD B, NICHOLAS J B, HAW J F. Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis[J]. Journal of the American Chemical Society, 2004, 126(9):2991-3001. |
[46] | ILIAS S, BHAN A. Mechanism of the catalytic conversion of methanol to hydrocarbons[J]. ACS Catalysis, 2013, 3(1):18-31. |
[47] | ZHANG J, SU D, ZHANG A, et al. Nanocarbon as robust catalyst:mechanistic insight into carbon-mediated catalysis[J]. Angewandte Chemie International Edition, 2007, 46(38):7319-7323. |
[48] | SU D S, WEN G, WU S, et al. Carbocatalysis in liquid-phase reactions[J]. Angewandte Chemie International Edition, 2017, 56(4):936-964. |
[49] | SCHLÖGL R. Catalysis 4.0[J]. ChemCatChem, 2017, 9(4):533-541. |
[50] | CAI D, WANG Q, JIA Z, et al. Equilibrium analysis of methylbenzene intermediates for a methanol-to-olefins process[J]. Catalysis Science & Technology, 2016, 6(5):1297-1301. |
[51] | LIANG J, LI H, ZHAO S, et al. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion[J]. Applied Catalysis, 1990, 64(1/2):31-40. |
[52] | YANG G, WEI Y, XU S, et al. Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions[J]. The Journal of Physical Chemistry C, 2013, 117(16):8214-8222. |
[53] | SONG W, HAW J F, NICHOLAS J B, et al. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J]. Journal of the American Chemical Society, 2000, 122(43):10726-10727. |
[54] | ZHANG J, QIAN W, KONG C, et al. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst[J]. ACS Catalysis, 2015, 5(5):2982-2988. |
[55] | HAW J F, SONG W, MARCUS D M, et al. The mechanism of methanol to hydrocarbon catalysis[J]. Accounts of Chemical Research, 2003, 36(5):317-326. |
[56] | CAI D, MA Y, HOU Y, et al. Establishing a discrete Ising model for zeolite deactivation:inspiration from the game of Go[J]. Catalysis Science & Technology, 2017, 7(12):2440-2444. |
[57] | MUHAMMAD O H J, KAM E K T. Analysis of coke laydown in FCC catalyst through structured catalyst modelling and experimentation[J]. Catalysis Today, 1997, 38(1):85-95. |
[58] | MARIN G. Rigorous kinetic models for catalyst deactivation by coke deposition:application to butene dehydrogenation*1[J]. Journal of Catalysis, 1986, 97(2):416-426. |
[59] | SAHIMI M. Nonlinear transport processes in disordered media[J]. AIChE Journal, 1993, 39(3):369-386. |
[60] | KORNHAUSER I, ROJAS F, FACCIO R J, et al. Structure characterization of disordered porous media-a memorial review dedicated to vicente mayagoitia[J]. Fractals, 1997, 5(3):355-377. |
[61] | BEYNE A O E, FROMENT G F. A percolation approach for the modeling of deactivation of zeolite catalysts by coke formation:diffusional limitations and finite rate of coke growth[J]. Chemical Engineering Science, 1993, 48(3):503-511. |
[62] | CHEN D, REBO H P, HOLMEN A. Diffusion and deactivation during methanol conversion over SAPO-34:a percolation approach[J]. Chemical Engineering Science, 1999, 54(15/16):3465-3473. |
[63] | CHRISTENSEN C, JOHANNSEN K, TORNQVIST E, et al. Mesoporous zeolite single crystal catalysts:Diffusion and catalysis in hierarchical zeolites[J]. Catalysis Today, 2007, 128(3/4):117-122. |
[64] | GUO X, LIU Z, ZHONG B. Monte Carlo simulation of coke formation in zeolites[J]. Microporous and Mesoporous Materials, 1998, 23(3/4):203-209. |
[65] | COPPENS M, FROMENT G F. Diffusion and reaction in a fractal catalyst pore(Ⅰ):Geometrical aspects[J]. Chemical Engineering Science, 1995, 50(6):1013-1026. |
[66] | KARGER J. Random-walk through 2-channel networks-a simple means to correlate the coefficients of anisotropic diffusion in ZSM-5 type zeolites[J]. Journal of Physical Chemistry, 1991, 95(14):5558-5560. |
[67] | JANSSENS T V W. A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts[J]. Journal of Catalysis, 2009, 264(2):130-137. |
[68] | CÂMARA L D T, CERQUEIRA H S, ARANDA D A G, et al. Application of a three-dimensional network model to the coke formation in FAU, MFI and BEA zeolites[J]. Catalysis Today, 2004, 98(1/2):309-315. |
[69] | MANN R, GOLSHAN H. application of a stochastic network pore model to a catalyst pellet[J]. Chemical Engineering Communications, 2007, 12(4/5/6):377-391. |
[70] | WHITE C R, SEYMOUR R S. Mammalian basal metabolic rate is proportional to body mass2/3[J]. Proceedings of the National Academy of Sciences, 2003, 100(7):4046-4049. |
[71] | MURRAY C D. The physiological principle of minimum work:i. the vascular system and the cost of blood volume[J]. Proceedings of the National Academy of Sciences, 1926, 12(3):207-214. |
[72] | MURRAY C D. A relationship between circumference and weight in trees and its bearing on branching angles[J]. The Journal of General Physiology, 1927, 10(5):725-729. |
[73] | HE J, ZHANG J. Fifth dimension of life and the 4/5 allometric scaling law for human brain[J]. Cell Biology International, 2004, 28(11):809-815. |
[74] | WEST G B. The fourth dimension of life:fractal geometry and allometric scaling of organisms[J]. Science, 1999, 284(5420):1677-1679. |
[75] | CIPRA B A. An introduction to the Ising model[J]. The American Mathematical Monthly, 1987, 94(10):937. |
[76] | CHOI M, NA K, KIM J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261):246-249. |
[77] | FU D, SCHMIDT J E, RISTANOVI? Z, et al. Highly oriented growth of catalytically active zeolite ZSM-5 films with a broad range of Si/Al ratios[J]. Angewandte Chemie, 2017, 129(37):11369-11373. |
[78] | SHETE M, KUMAR M, KIM D, et al. Nanoscale control of homoepitaxial growth on a two-dimensional zeolite[J]. Angewandte Chemie International Edition, 2017, 56(2):535-539. |
[79] | AGRAWAL K V, TOPUZ B, PHAM T C T, et al. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers[J]. Advanced Materials, 2015, 27(21):3243-3249. |
[80] | LIU F, WILLHAMMAR T, WANG L, et al. ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules[J]. Journal of the American Chemical Society, 2012, 134(10):4557-4560. |
[81] | LI Y, HUANG Y, GUO J, et al. Hierarchical SAPO-34/18 zeolite with low acid site density for converting methanol to olefins[J]. Catalysis Today, 2014, 233:2-7. |
[82] | LI Y, ZHANG M, WANG D, et al. Differences in the methanol-to-olefins reaction catalyzed by SAPO-34 with dimethyl ether as reactant[J]. Journal of Catalysis, 2014, 311:281-287. |
[83] | CUI Y, ZHANG Q, HE J, et al. Pore-structure-mediated hierarchical SAPO-34:facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins[J]. Particuology, 2013, 11(4):468-474. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[4] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[5] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[6] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[7] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[8] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[9] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[10] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[11] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[12] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[13] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[14] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[15] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||