化工学报 ›› 2018, Vol. 69 ›› Issue (1): 102-115.DOI: 10.11949/j.issn.0438-1157.20171366
董正亚1,2, 陈光文1, 赵帅南1, 袁权1
收稿日期:
2017-10-12
修回日期:
2017-11-01
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
陈光文
基金资助:
国家自然科学基金项目(91634204,U1608221,21225627);大连化物所科研创新基金项目(DICP ZZBS201706)。
DONG Zhengya1,2, CHEN Guangwen1, ZHAO Shuainan1, YUAN Quan1
Received:
2017-10-12
Revised:
2017-11-01
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171366
Supported by:
supported by the National Natural Science Foundation of China (91634204, U1608221, 21225627) and DICP (DICP ZZBS201706).
摘要:
微反应器和声化学技术都是化工过程强化的重要手段,但都有优缺点。阐释了“声化学微反应器”的理念——微反应器和声化学技术相互集成,利用超声强化微通道内的混合、传质和预防堵塞等,同样借助微反应器实现声场和气泡场的有效调控并解决声空化过程的放大难题,实现协调强化的目的。同时,深入剖析了声化学微反应器内的声空化行为、声场和气泡场调控规律,以及多相流动体系中的混合与传质强化机制。最后展望了该领域的发展方向,并指出超声空化过程中表界面时空尺度现象和理论是实现并优化超声强化的基础。
中图分类号:
董正亚, 陈光文, 赵帅南, 袁权. 声化学微反应器——超声和微反应器协同强化[J]. 化工学报, 2018, 69(1): 102-115.
DONG Zhengya, CHEN Guangwen, ZHAO Shuainan, YUAN Quan. Sonochemical microreactor-synergistic intensification of ultrasound and microreactor[J]. CIESC Journal, 2018, 69(1): 102-115.
[1] | STANKIEWICZ A, MOULIJN J A. Process intensification[J]. Ind. Eng. Chem. Res., 2002, 41(8):1920-1924. |
[2] | DONG Z Y, CHEN G W. Sonochemical microreactor-a synergistic combination of sonochemistry and microreactor to intensify mixing, mass transfer and prevent clogging[C]//Proceedings of the 13th International Conference on Microreaction Technology. Budapest, Hungary:AK Congress, 2014. |
[3] | DONG Z Y, YAO C Q, ZHANG X L, et al. A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification[J]. Lab Chip, 2015, 15(4):1145-1152. |
[4] | DONG Z Y, YAO C Q, ZHANG Y C, et al. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors[J]. AIChE Journal, 2016, 62(4):1294-1307. |
[5] | DONG Z Y, ZHAO S N, ZHANG Y C, et al. Mixing and residence time distribution in ultrasonic microreactors[J]. AIChE Journal, 2017, 63(4):1408-1418. |
[6] | ZHAO S N, DONG Z Y, YAO C Q, et al. Liquid-liquid two-phase flow in ultrasonic microreactors:cavitation, emulsification and mass transfer enhancement[J]. AIChE Journal, 2018, 64:DOI:10.1002/aic.16010 |
[7] | 董正亚. 声化学微反应器中传质过程的强化[D]. 大连:中国科学院大连化学物理研究所, 2016. DONG Z Y. Intensification of mass transfer processes in sonochemical microreactor[D]. Dalian:Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2016. |
[8] | JÄHNISCH K, HESSEL V, LÖWE H, et al. Chemistry in microstructured reactors[J]. Angew. Chem. Int. Ed., 2004, 43(4):406-446. |
[9] | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4):427-439. CHEN G W, QUAN Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4):427-439. |
[10] | 陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1):63-75. CHEN G W, ZHAO Y C, YUE J, et al. Transport phenomena in micro chemical engineering[J]. CIESC Journal, 2013, 64(1):63-75. |
[11] | HESSEL V, LÖWE H, SCHÖNFELD F. Micromixers-a review on passive and active mixing principles[J]. Chem. Eng. Sci., 2005, 60(8/9):2479-2501. |
[12] | KOCKMANN N. Transport Phenomena in Micro Process Engineering[M]. Berlin Heidelberg:Springer-Verlag, 2008. |
[13] | POE S L, CUMMINGS M A, HAAF M P, et al. Solving the clogging problem:precipitate-forming reactions in flow[J]. Angew. Chem. Int. Ed., 2006, 45(10):1544-1548. |
[14] | STANKIEWICZ A. On the applications of alternative energy forms and transfer mechanisms in microprocessing systems[J]. Ind. Eng. Chem. Res., 2007, 46(12):4232-4235. |
[15] | 冯若, 李化茂. 声化学及其应用[M]. 合肥:安徽科学技术出版社, 1992. FENG R, LI H M. Sonochemistry and Its Applications[M]. Hefei:Anhui Science and Technology Press, 1992. |
[16] | LEIGHTON T G.What is ultrasound[J].Prog. Biophys. Mol. Biol., 2007, 93(1):3-83 |
[17] | 秦炜, 原永辉, 戴猷元. 超声场对化工分离过程的强化[J]. 化工进展, 1995, (1):1-5. QIN W, YUAN Y H, DAI Y Y. Enhancement of chemical separation process by ultrasonic field[J]. Chemical Industry and Engineering Progress, 1995, (1):1-5. |
[18] | GOGATE P R. Cavitational reactors for process intensification of chemical processing applications:a critical review[J]. Chemical Engineering and Processing, 2008, 47(4):515-527. |
[19] | GOGATE P R, SUTKAR V S, PANDIT A B. Sonochemical reactors:important design and scale up considerations with a special emphasis on heterogeneous systems[J]. Chem. Eng. J., 2011, 166(3):1066-1082. |
[20] | BIRKIN P R, OFFIN D G, VIAN C J B, et al. Investigation of noninertial cavitation produced by an ultrasonic horn[J]. J. Acoust. Soc. Am., 2011, 130(5):3297-3308. |
[21] | HASHMI A, YU G, REILLY-COLLETTE M, et al. Oscillating bubbles:a versatile tool for lab on a chip applications[J]. Lab Chip, 2012, 12(21):4216-4227. |
[22] | LAUTERBORN W, KURZ T. Physics of bubble oscillations[J]. Reports on Progress in Physics, 2010, 73(10):106501. |
[23] | 王成会, 林书玉. 超声波作用下气泡的非线性振动[J]. 力学学报, 2010, 42(6):1050-1059. WANG C H, LIN S Y. The nonlinear oscillation of bubbles in the ultrasonic field[J]. Chinese Journal of Theoretical & Applied Mechanics, 2010, 42(6):1050-1059. |
[24] | MINNAERT M. On musical air-bubbles and the sounds of running water[J]. Philosophical Magazine, 1933, 16(104):235-248. |
[25] | ASHOKKUMAR M, LEE J, KENTISH S, et al. Bubbles in an acoustic field:an overview[J]. Ultrasonics Sonochemistry, 2007, 14(4):470-475. |
[26] | LEIGHTON T G. Bubble population phenomena in acoustic cavitation[J]. Ultrasonics Sonochemistry, 1995, 2(2):S123-S136. |
[27] | FREITAS S, HIELSCHER G, MERKLE H P, et al. Continuous contact-and contamination-free ultrasonic emulsification-a useful tool for pharmaceutical development and production[J]. Ultrasonics Sonochemistry, 2006, 13(1):76-85. |
[28] | NICKEL K, NEIS U. Ultrasonic disintegration of biosolids for improved biodegradation[J]. Ultrasonics Sonochemistry, 2007, 14(4):450-455. |
[29] | CINTAS P, MANTEGNA S, GAUDINO E C, et al. A new pilot flow reactor for high-intensity ultrasound irradiation. Application to the synthesis of biodiesel[J]. Ultrasonics Sonochemistry, 2010, 17(6):985-989. |
[30] | DEZHKUNOV N V, FRANCESCUTTO A, CIUTI P, et al. Enhancement of sonoluminescence emission from a multibubble cavitation zone[J]. Ultrasonics Sonochemistry, 2000, 7(1):19-24. |
[31] | MAHULKAR A V, BAPAT P S, PANDIT A B, et al. Steam bubble cavitation[J]. AIChE Journal, 2008, 54(7):1711-1724. |
[32] | LIU Y N, JIN D, LU X P, et al. Study on degradation of dimethoate solution in ultrasonic airlift loop reactor[J]. Ultrasonics Sonochemistry, 2008, 15(5):755-760. |
[33] | HERRAN N S, LOPEZ J L C, PEREZ J A S. Gas-liquid mass transfer in sonicated bubble columns. Effect of reactor diameter and liquid height[J]. Ind. Eng. Chem. Res., 2012, 51(6):2769-2774. |
[34] | KUHN S, NOEL T, GU L, et al. A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions[J]. Lab Chip, 2011, 11(15):2488-2492. |
[35] | ALJBOUR S, YAMADA H, TAGAWA T. Ultrasound-assisted phase transfer catalysis in a capillary microreactor[J]. Chemical Engineering and Processing, 2009, 48(6):1167-1172. |
[36] | ALJBOUR S, TAGAWA T, YAMADA H. Ultrasound-assisted capillary microreactor for aqueous-organic multiphase reactions[J]. J. Ind. Eng. Chem., 2009, 15(6):829-834. |
[37] | HUBNER S, KRESSIRER S, KRALISCH D, et al. Ultrasound and microstructures-a promising combination?[J]. ChemSusChem, 2012, 5(2):279-288. |
[38] | ROBERGE D, RAINONE F, QUITTMANN W, et al. Method for preventing plugging of a continuous-reaction channel-system and micro-reactor for carrying out the method:US20150158007[P]. 2015-06-11. |
[39] | TANDIONO, OHL S W, OW D S W, et al. Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves[J]. Lab Chip, 2010, 10(14):1848-1855. |
[40] | VERHAAGEN B, LIU Y L, PÉREZ A G, et al. Scaled-up sonochemical microreactor with increased efficiency and reproducibility[J]. ChemistrySelect, 2016, 1(2):136-139. |
[41] | TOVAR A R, LEE A P. Lateral cavity acoustic transducer[J]. Lab Chip, 2009, 9(1):41-43. |
[42] | AHMED D, MAO X, JULURI B K, et al. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles[J]. Microfluidics and Nanofluidics, 2009, 7(5):727-731. |
[43] | AHMED D, MAO X, SHI J J, et al. A millisecond micromixer via single-bubble-based acoustic streaming[J]. Lab Chip, 2009, 9(18):2738-2741. |
[44] | RIVAS D F, PROSPERETTI A, ZIJLSTRA A G, et al. Efficient sonochemistry through microbubbles generated with micromachined surfaces[J]. Angew. Chem. Int. Ed., 2010, 49(50):9699-9701. |
[45] | RIVAS D F, STRICKER L, ZIJLSTRA A G, et al. Ultrasound artificially nucleated bubbles and their sonochemical radical production[J]. Ultrasonics Sonochemistry, 2013, 20(1):510-524. |
[46] | OZCELIK A, AHMED D, XIE Y L, et al. An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls[J]. Analytical Chemistry, 2014, 86(10):5083-5088. |
[47] | TANDIONO, OHL S W, OW D S W, et al. Sonochemistry and sonoluminescence in microfluidics[J]. Proc. Natl. Acad. Sci. USA, 2011, 108(15):5996-5998. |
[48] | RIFE J C, BELL M I, HORWITZ J S, et al. Miniature valveless ultrasonic pumps and mixers[J]. Sensors and Actuators A-Physical, 2000, 86(1/2):135-140. |
[49] | BENGTSSON M, LAURELL T. Ultrasonic agitation in microchannels[J]. Analytical and Bioanalytical Chemistry, 2004, 378(7):1716-1721. |
[50] | LUONG T D, PHAN V N, NGUYEN N T. High-throughput micromixers based on acoustic streaming induced by surface acoustic wave[J]. Microfluidics and Nanofluidics, 2011, 10(3):619-625. |
[51] | THO P, MANASSEH R, OOI A. Cavitation microstreaming patterns in single and multiple bubble systems[J]. J. Fluid Mech., 2007, 576:191-233. |
[52] | ELDER S A. Cavitation microstreaming[J]. J. Acoust. Soc. Am., 1959, 31(1):54-64. |
[53] | WIKLUND M, GREEN R, OHLIN M. Acoustofluidics 14:applications of acoustic streaming in microfluidic devices[J]. Lab Chip, 2012, 12(14):2438-2451. |
[54] | WANG C, RALLABANDI B, HILGENFELDT S. Frequency dependence and frequency control of microbubble streaming flows[J]. Physics of Fluids, 2013, 25(2):022002. |
[55] | FOWLER C J, HAVERLOCK T J, MOYER B A, et al. Enhanced anion exchange for selective sulfate extraction:overcoming the Hofmeister bias[J]. J. Am. Chem. Soc., 2008, 130(44):14386-14387. |
[56] | SAMANT K D, SINGH D J, NG K M. Design of liquid-liquid phase transfer catalytic processes[J]. AIChE Journal, 2001, 47(8):1832-1848. |
[57] | MATSUYAMA K, MINE K, KUBO H, et al. Design of micromixer for emulsification and application to conventional commercial plant for cosmetic[J]. Chem. Eng. J., 2011, 167(2):727-733. |
[58] | ZHAO Y C, CHEN G W, YUAN Q. Liquid-liquid two-phase mass transfer in the T-junction microchannels[J]. AIChE Journal, 2007, 53(12):3042-3053. |
[59] | 陈光文, 赵玉潮, 袁权. 微尺度下液-液流动与传质特性的研究进展[J]. 化工学报, 2010, 61(7):1627-1635. CHEN G W, ZHAO Y C, QUAN Q. Advances in flow hydrodynamic and mass transfer characteristics of liquid phase in microscale[J]. CIESC Journal, 2010, 61(7):1627-1635. |
[60] | KASHID M N, RENKEN A, KIWI-MINSKER L. Gas-liquid and liquid-liquid mass transfer in microstructured reactors[J]. Chem. Eng. Sci., 2011, 66(17):3876-3897. |
[61] | JOHN J J, KUHN S, BRAEKEN L, et al. Ultrasound assisted liquid-liquid extraction in microchannels-a direct contact method[J]. Chemical Engineering and Processing, 2016, 102:37-46. |
[62] | CADWELL M L, FOGLER H S. Ultrasonic gas absorption and acoustic streaming observations[J]. Chem. Eng. Prog. Symp. Series, 1971, 67(109):124-127. |
[63] | GONDREXON N, RENAUDIN V, BOLDO P, et al. Degassing effect and gas-liquid transfer in a high frequency sonochemical reactor[J]. Chem. Eng. J., 1997, 66(1):16-21. |
[64] | KUMAR A, GOGATE P R, PANDIT A B, et al. Gas liquid mass transfer studies in sonochemical reactors[J]. Ind. Eng. Chem. Res., 2004, 43(8):1812-1819. |
[65] | LAUGIER F, ANDRIANTSIFERANA C, WILHELM A M, et al. Ultrasound in gas-liquid systems:effects on solubility and mass transfer[J]. Ultrasonics Sonochemistry, 2008, 15(6):965-972. |
[66] | YUE J, CHEN G W, YUAN Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chem. Eng. Sci., 2007, 62(7):2096-2108. |
[67] | NIEVES-REMACHA M J, KULKARNI A A, JENSEN K F. Gas-liquid flow and mass transfer in an advanced-flow reactor[J]. Ind. Eng. Chem. Res., 2013, 52(26):8996-9010. |
[68] | HARTMAN R L, NABER J R, ZABORENKO N, et al. Overcoming the challenges of solid bridging and constriction during Pd-Catalyzed C-N bond formation in microreactors[J]. Org. Process. Res. Dev., 2010, 14(6):1347-1357. |
[69] | NOËL T, NABER J R, HARTMAN R L, et al. Palladium-catalyzed amination reactions in flow:overcoming the challenges of clogging via acoustic irradiation[J]. Chemical Science, 2011, 2(2):287-290. |
[70] | HORIE T, SUMINO M, TANAKA T, et al. Photodimerization of maleic anhydride in a microreactor without clogging[J]. Organic Process Research & Development, 2010, 14(2):405-410. |
[71] | CASTRO F, KUHN S, JENSEN K, et al. Process intensification and optimization for hydroxyapatite nanoparticles production[J]. Chem. Eng. Sci., 2013, 100:352-359. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[7] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[8] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[9] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[10] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[11] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[12] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[13] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[14] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[15] | 王倩倩, 刘明言, 马永丽. 水中超声波脱气的效应研究[J]. 化工学报, 2023, 74(4): 1693-1702. |
阅读次数 | ||||||
全文 363
|
|
|||||
摘要 |
|
|||||