化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4605-4613.DOI: 10.11949/j.issn.0438-1157.20180699
高翔1, 国媛1, 魏迪锋1, 罗英武1, 苏荣欣2
收稿日期:
2018-06-29
修回日期:
2018-09-20
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
高翔
基金资助:
国家自然科学基金项目(21574115,21875213)。
GAO Xiang1, GUO Yuan1, WEI Difeng1, LUO Yingwu1, SU Rongxin2
Received:
2018-06-29
Revised:
2018-09-20
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (21574115, 21875213).
摘要:
硅具有较高的理论比容量,被认为是极具应用前景的锂离子电池负极材料。然而,硅在充放电过程中会产生巨大的体积变化,导致电极粉化脱落和容量的迅速下降,限制了硅基负极材料的应用。黏结剂是锂离子电池中一个不可或缺的组成部分,对体积变化较大的硅基负极而言,除了满足作为锂离子电池黏结剂的基本要求外,对黏结剂的结构和性能又提出了新的要求,黏结剂的选择对于增强硅基电极结构的稳定性并实现长期循环具有更加重要的意义。总结了近年来硅基负极材料黏结剂的研究进展,重点介绍了用于硅基负极材料的交联类黏结剂、导电类黏结剂和自修复类黏结剂等几种黏结剂的性能特点和应用,为选择和设计更加适合的硅基负极黏结剂提供研究建议。
中图分类号:
高翔, 国媛, 魏迪锋, 罗英武, 苏荣欣. 锂离子电池硅基负极黏结剂的研究新进展[J]. 化工学报, 2018, 69(11): 4605-4613.
GAO Xiang, GUO Yuan, WEI Difeng, LUO Yingwu, SU Rongxin. Recent progress on binders for silicon-based anodes in lithium-ion batteries[J]. CIESC Journal, 2018, 69(11): 4605-4613.
[1] | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7):7854-7863. |
[2] | WANG C S, WU G T, LI W Z. Lithium insertion in ball-milled graphite[J]. Journal of Power Sources, 1998, 76(1):1-10. |
[3] | MIZUSHIMA K, JONES P, WISEMAN P, et al. LiCoOx (0x15(6):783-789. |
[4] | PAULSEN J, NEHAUS J, DAHN J. Layered LiCoO2:with a different oxygen stacking (O2 structure) as a cathode material for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 2000, 147(2):508-516. |
[5] | RITCHIE A G. Recent developments and future prospects for lithium rechargeable batteries[J]. Journal of Power Sources, 2001, 96(1):1-4. |
[6] | WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5):414-429. |
[7] | SZCZECH J R, SONG J. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy &Environmental Science, 2011, 4(1):56-72. |
[8] | LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2):1522-1531. |
[9] | 武兆辉, 杨娟玉, 闫坤, 等. 锂离子电池硅基负极用聚合物黏结剂的研究进展[J]. 稀有金属, 2016, 40(8):838-849. WU Z H, YANG J Y, YAN K, et al. Advances in polymeric binder for silicon based anode of lithium-ion batteries[J]. Chinese Journal of Rare Metals, 2016, 40(8):838-849. |
[10] | JUNG D, HWANG T, PARK S. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries[J]. Nano Letters, 2013, 13(5):2092-2097. |
[11] | GOLMON S, MAUTE K, LEE S, et al. Stress generation in silicon particles during lithium insertion[J]. Applied Physics Letters, 2010, 97(3):033111-033113. |
[12] | CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):30-34. |
[13] | CUI L F, RUFFO R, CHAN C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2008, 9(1):414-491. |
[14] | CHOI J W, MCDONOUGH J, JEONG S, et al. Stepwise nanopore evolution in one-dimensional nanostructures[J]. Nano Letters, 2010, 10(4):1409-1413. |
[15] | LI X, CHO J H, LI N, et al. Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(1):87-93. |
[16] | SONG T, XIA J, LEE J H, et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J]. Nano Letters, 2010, 10(5):1710-1716. |
[17] | YANG J, LU S, KAN S, et al. Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride[J]. Chemical Communications, 2009, 22(22):3273-3275. |
[18] | KIM H S, CHUNG K Y, CHO B W. Electrochemical properties of carbon-coated Si/B composite anode for lithium ion batteries[J]. Journal of Power Sources, 2009, 189(1):108-113. |
[19] | CHEN Y, QIAN J, CAO Y, et al. Green synthesis and stable Li-storage performance of FeSi2/Si@C nanocomposite for lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2012, 4(7):3753-3758. |
[20] | HATCHARD T D, DAHN J R. Study of the electrochemical performance of sputtered Si1-xSnx films[J]. Journal of the Electrochemical Society, 2004, 151(2):306-315. |
[21] | CHEN L B, XIE J Y, YU H C, et al. Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries[J]. Electrochimica Acta, 2008, 53(28):8149-8153. |
[22] | XIANG H, ZHANG K, JI G, et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability[J]. Carbon, 2011, 49(5):1787-1796. |
[23] | FAN Y, ZHANG Q, XIAO Q, et al. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology[J]. Carbon, 2013, 59(7):264-269. |
[24] | LIU N, WU H, MCDOWEILL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6):3315-3321. |
[25] | JO Y N, KIM Y, KIM J S, et al. Si-graphite composites as anode materials for lithium secondary batteries[J]. Journal of Power Sources, 2010, 195(18):603l-6036. |
[26] | ZHOU M, CAI T, PU F, et al. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries[J]. ACS Applied Materials &Interfaces, 2013, 5(8):3449-3455. |
[27] | 刘欣, 赵海雷, 解晶莹, 等. 锂离子电池高比容量负极用黏结剂[J]. 化学进展, 2013, 25(8):1401-1410. LIU X, ZHAO H L, XIE J Y, et al. Polymer binders for high capacity electrode of lithium-ion battery[J]. Progress in Chemistry, 2013, 25(8):1401-1410. |
[28] | WU M, XIAO X, VUKMIROVIC N, et al. Toward an ideal polymer binder design for high-capacity battery anodes[J]. Journal of the American Chemical Society, 2013, 135(32):12048-12056. |
[29] | LIU G, ZHENG H, SIMENS A S, et al. Optimization of acetylene black conductive additive and PVDF composition for high-power rechargeable lithium-ion cells[J]. Journal of the Electrochemical Society, 2007, 6(14):45-56. |
[30] | CHOU S L, PAN Y, WANG J Z, et al. Small things make a big difference:binder effects on the performance of Li and Na batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(38):20347-20359. |
[31] | MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes:polyacrylic acid[J]. ACS Appl. Mater. & Inter., 2010, 2(11):3004-3010. |
[32] | HOCHGATTERER N S, SCHWEIGER M R, KOLLER S, et al. Silicon/graphite composite electrodes for high-capacity anodes:influence of binder chemistry on cycling stability[J]. Electrochemical and Solid-State Letters, 2008, 11(5):A76-A80. |
[33] | JEONG Y K, KWON T W, LEE I, et al. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes[J]. Energy Environmental Science, 2015, 8(4):1224-1230. |
[34] | MAZOUZI D, KARKAR Z, HERNANDEZ C R, et al. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes[J]. Journal of Power Sources, 2015, 280(15):533-549. |
[35] | WU H, YU G H, PAN L J, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature Communications, 2013, 4(1):1943-1949 |
[36] | HAN Z J, YABUUCHI N, HASHIMOTO S, et al. Cross-linked poly(acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries[J]. ECS Electrochemistry Letters, 2013, 2(2):A17-A20. |
[37] | ZHENG T, JIA Z, LIN N, et al. Molecular spring enable high-performance anode for lithium ion batteries[J]. Polymers, 2017, 9(12):657-664. |
[38] | KIERZEK K. Influence of binder adhesion ability on the performance of silicon/carbon composite as Li-ion battery anode[J]. Journal of Materials Engineering & Performance, 2016, 25(6):2326-2330. |
[39] | ZHAO H, YUAN W, LIU G. Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries[J]. Nano Today, 2015, 10(2):193-212. |
[40] | 岳丽萍, 韩鹏献, 姚建华, 等. 锂离子电池硅基负极黏结剂研究进展[J]. 电池工业, 2017, 21(1):31-44. YUE L P, HAN P X, YAO J H, et al. Advances of binder for silicon-based anode in lithium ion batteries[J]. Chinese Battery Industry, 2017, 21(1):31-34. |
[41] | NIRMALE T C, KALE B B, VARMA A J. A review on cellulose and lignin based binders and electrodes:small steps towards a sustainable lithium ion battery[J]. International Journal of Biological Macromolecules, 2017, 103(5):1032-1043. |
[42] | 叶利强, 符冬菊, 马清, 等. 锂离子电池硅基负极材料黏结剂的研究进展[J]. 电池, 2014, 44(4):238-240. YE L Q, FU D J, MA Q, et al. Research progress in binders of Si-based anodes for Li-ion battery[J]. Battery Bimonthly, 2014, 44(4):238-240. |
[43] | JEENA M T, LEE J I, KIM S H, et al. Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(20):18001-18007. |
[44] | PARK Y, LEE S, KIM S H, et al. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries[J]. RSC Advances, 2013, 3(31):12625-12630. |
[45] | SONG J, ZHOU M, YI R, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24(37):5904-5910. |
[46] | RYOU M H, KIM J, LEE I, et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries[J]. Advanced Materials, 2013, 25(11):1571-1576. |
[47] | KOO B, KIM H, CHO Y, et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie, 2012, 51(35):8762-8767. |
[48] | ZHANG L, ZHANG L Y, CHAI L, et al. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(44):19036-19045. |
[49] | WEI L, HOU Z. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(42):22156-22162. |
[50] | GENDERSUREN B, OH E S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. Journal of Power Sources, 2018, 384(30):379-386. |
[51] | CHEN C, LEE S H, CHO M S, et al. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(4):2658-2665. |
[52] | LIU Z, HAN S, XU C, et al. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries[J]. RSC Advances, 2016, 6(72):68371-68378. |
[53] | MACDIARMID A G, EPSTEIN A J. Polyanilines:a novel class of conducting polymers[J]. Faraday Discussions of the Chemical Society, 1989, 202(88):317-327. |
[54] | LIU Y, MATSUMURA T, IMANISH N, et al. Preparation and characterization of Si/C composite coated with polyaniline as novel anodes for Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(11):A599-A602. |
[55] | LIU G, XUN S, VUKMIROVIC N, et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes[J]. Advanced Materials, 2011, 23(40):4679-4683. |
[56] | ZENG W, WANG L, PENG X, et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018, 11(8):1702314-1702316. |
[57] | LIU D, ZHAO Y, TAN R, et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries[J]. Nano Energy, 2017, 36(4):206-212. |
[58] | ZHAO H, DU A, LING M, et al. Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application[J]. Electrochimica Acta, 2016, 209(5):159-162. |
[59] | CHEN Z, WANG C, LOPEZ J, et al. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder[J]. Advanced Energy Materials, 2015, 5(8):1401826-1401831. |
[60] | SUN Y, LOPEZ J, LEE H, et al. A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer[J]. Advanced Materials, 2016, 28(12):2455-2461. |
[61] | WANG C, WU H, CHEN Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nature Chemistry, 2013, 5(12):1042-1048. |
[62] | XU Z, YANG J, ZHANG T, et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule, 2018, 2(5):818-819. |
[63] | MUNAOKA T, YAN X, LOPEZ J, et al. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(11):1703138-1703142. |
[64] | WU Z H, YANG J Y, YU B, et al. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries[J]. Rare Metals, 2016, 1(2):1-8. |
[65] | BIE Y, YANG J, NULI Y, et al. Oxidized starch as a superior binder for silicon anodes in lithium-ion batteries[J]. RSC Advances, 2016, 6(99):97084-97088. |
[66] | XU J, ZHANG Q, CHENG Y T. High capacity silicon electrodes with Nafion as binders for Lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 163(3):A401-A405. |
[67] | KURUBA R, DATTA M K, DAMODARAN K, et al. Guar gum:structural and electrochemical characterization of natural polymer based binder for silicon-carbon composite rechargeable Li-ion battery anodes[J]. Journal of Power Sources, 2015, 298(11):331-340. |
[68] | LIN C T, HUANG T Y, HUANG J J, et al. Multifunctional co-poly(amic acid):a new binder for Si-based micro-composite anode of lithium-ion battery[J]. Journal of Power Sources, 2016, 330(9):246-252 |
[69] | SHAN C, WU K, YEN H J, et al. Graphene oxides used as a new "Dual Role" binder for stabilizing silicon nanoparticles in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(18):15665-15672. |
[70] | ZHANG J, ZHANG C, WU S, et al. High-performance lithium-ion battery with nano-porous polycrystalline silicon particles as anode[J]. Electrochimica Acta, 2016, 208(4):174-179. |
[71] | YOON T, CHAPMAN N, CAO C N, et al. Electrochemical reactivity of polyimide and feasibility as a conductive binder for silicon negative electrodes[J]. Journal of Materials Science, 2016, 52(7):1-9. |
[72] | KARKAR Z, GUYOMARD D, ROUE L, et al. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes[J]. Electrochimica Acta, 2017, 258(3):453-466. |
[73] | WANG L, LIU T, PENG X, et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(3):1704858-1704862. |
[74] | SANG H L, LEE J H, DONG H N, et al. Epoxidized natural rubber-chitosan network binder for silicon anode in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(19):16449-16457. |
[75] | FENG K, LI M, LIU W, et al. Silicon-based anodes for lithium-ion batteries:from fundamentals to practical applications[J]. Small, 2018, 14(8):1702737-1702746. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[4] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[5] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[6] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[7] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[8] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[9] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[12] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[13] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[14] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[15] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||