化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4592-4604.DOI: 10.11949/j.issn.0438-1157.20180582
曹墨源1, 巴特尔1, 柏浩2
收稿日期:
2018-05-30
修回日期:
2018-08-12
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
曹墨源
基金资助:
化学工程联合国家重点实验室开放基金项目(SKL-CHE-16B04);天津大学自主基金项目(2018XZY-0059)。
CAO Moyuan1, BA Teer1, BAI Hao2
Received:
2018-05-30
Revised:
2018-08-12
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the State Key Laboratory of Chemical Engineering (SKL-CHE-16B04) and the Tianjin University (2018XZY-0059).
摘要:
仿生特殊浸润性界面材料是一类新兴的功能材料。此类界面材料与特定流体之间存在极致的相互作用,如完全浸润、完全不浸润及可调性浸润等,使其在物理学、化学、工程学、生命科学等学科都发挥出特殊的功能。通过学习自然界具有特殊结构与化学组成的生命体,研究人员可以构筑多种对流体具有排斥、吸引、疏导等作用的特殊浸润界面材料,从而优化目前科研及生产中的流体操控过程。“三传一反”中存在大量的固/液/气多相作用过程,这为仿生特殊浸润界面材料提供了重要的应用场所,同时也对此类材料的设计提出了新的要求。介绍了仿生特殊浸润界面材料在传统化工相关领域的几类应用,包括冷凝换热、多相分离体系、设备防腐防污,非均相催化,以及定向流体传质等方向,并总结仿生特殊浸润界面材料在化工过程中应用的挑战与机遇,对此类界面材料在化工过程中的发展前景进行展望。
中图分类号:
曹墨源, 巴特尔, 柏浩. 仿生特殊浸润性界面在化学工程与工艺中的应用[J]. 化工学报, 2018, 69(11): 4592-4604.
CAO Moyuan, BA Teer, BAI Hao. Applications of bio-inspired surfaces possessing special wettability in chemical engineering and technology[J]. CIESC Journal, 2018, 69(11): 4592-4604.
[1] | FENG L, LI S H, LI Y S, et al. Super-hydrophobic surfaces:from natural to artificial[J]. Adv. Mater., 2002, 14(24):1857-1860. |
[2] | JIANG L, ZHAO Y, ZHAI J. A lotus-leaf-like superhydrophobic surface:a porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angew. Chem. Int. Ed., 2004, 43(33):4338-4341. |
[3] | LIU M J, WANG S T, WEI Z X, et al. Superoleophobic surfaces:bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Adv. Mater., 2009, 21(6):665-669. |
[4] | JIANG L, CHEN H W, ZHANG P F, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(3):85-89. |
[5] | PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859):33-34. |
[6] | HU D L, CHAN B, BUSH J W M. The hydrodynamics of water strider locomotion[J]. Nature, 2003, 424(6949):663-666. |
[7] | ELIASON C M, SHAWKEY M D. Decreased hydrophobicity of iridescent feathers:a potential cost of shiny plumage[J]. J. Exp. Biol., 2011, 214(13):2157-2163. |
[8] | CAO M Y, JIANG L. Superwettability integration:concepts, design and applications[J]. Surface Innov., 2016, 4(4):180-194. |
[9] | SETHI S, L GE, L CI, et al. Gecko-inspired carbon nanotube-based self-cleaning adhesives[J]. Nano Letters, 2008, 8(3):822-825. |
[10] | DRELICH J, CHIBOWSKI E. Superhydrophilic and superwetting surfaces:definition and mechanisms of control[J]. Langmuir, 2010, 26(24):18621-18623. |
[11] | DRELICH J, CHIBOWSKI E, MENG D D. Hydrophilic and superhydrophilic surfaces and materials[J]. Soft Matter, 2011, 7(21):9804-9828. |
[12] | LIU M J, ZHENG Y M, ZHAI J. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion[J]. Acc. Chem. Res., 2010, 43(3):368-377. |
[13] | LIN L, LIU M J, CHEN L, et al. Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity[J]. Adv. Mater., 2010, 22(43):4826-4830. |
[14] | TIAN Y, SU B, JIANG L. Interfacial material system exhibiting superwettability[J]. Adv. Mater., 2014, 26(40):6872-6897. |
[15] | 杨卧龙, 徐进良, 纪献兵. 超亲水多孔表面的小液滴发射行为及动力学特性[J]. 化工学报, 2016, 67(9):3607-3615. YANG W L, XU J L, JI X B. Ejection profile and kinetics of droplets spreading on superhydrophilic porous surfaces[J]. CIESC Journal, 2016, 67(9):3607-3615. |
[16] | 李栋, 王鑫, 高尚文, 等. 单液滴撞击超疏水冷表面的反弹及破碎行为[J]. 化工学报, 2017, 68(6):2473-2482. LI D, WANG X, GAO S W, et al. Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J]. CIESC Journal, 2017, 68(6):2473-2482. |
[17] | 马学虎, 兰忠, 王凯, 等. 舞动的液滴:界面现象与过程调控[J]. 化工学报, 2018, 69(1):6-43. MA X H, LAN Z, WANG K, et al. Dancing droplet:interface phenomena and process regulation[J]. CIESC Journal, 2018, 69(1):6-43. |
[18] | THOMAS Y. An essay on the cohesion of fluids[J]. Phil. Trans. Roy. Soc. London, 1805, 95:65-87. |
[19] | VOGLER E A. Structure and reactivity of water at biomaterial surfaces[J]. Adv. Colloid Interface Sci., 1998, 74(1/2/3):69-117. |
[20] | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28(8):988-994. |
[21] | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40:546-551. |
[22] | LORENCEAU L, QUR D. Drops on a conical wire[J]. J. Fluid Mech., 1999, 510:29-45. |
[23] | LUO C, HENG X, XIANG M. Behavior of a liquid drop between two nonparallel plates[J]. Langmuir, 2014, 30(28):8373-8380. |
[24] | HENG X, LUO C. Separation of oil from a water/oil mixed drop using two nonparallel plates[J]. Langmuir, 2014, 30(33):10002-10010. |
[25] | 柴诚敬, 张国亮. 化工流体流动与传热[M]. 2版. 北京:化学工业出版社, 2007:1. CHAI C J, ZHANG G L. Fluid Dynamics and Heat Transfer[M]. 2nd ed. Beijing:Chemical Industry Press, 2007:1. |
[26] | GONG X J, GAO X F, JIANG L. Recent progress in bionic condensate microdrop self-propelling surfaces[J]. Adv. Mater., 2017, 29(45):1-14. |
[27] | DANIEL S, CHAUDHURY M K, CHEN J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291(5504):633-636. |
[28] | ROSE J W. Dropwise condensation theory and experiment:a review[J]. Proc. Inst. Mech. Eng., Part A, 2002, 216(2):115-128. |
[29] | CHEN J C. Surface contact-its significance for multiphase heat transfer:diverse examples[J]. J. Heat Transfer, 2003, 125(4):549-566. |
[30] | MILJKOVIC N, ENRIGHT R, NAM Y, et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces[J]. Nano Letters, 2013, 13(1):179-187. |
[31] | WEN R F, LI Q, WU J F, et al. Hydrophobic copper nanowires for enhancing condensation heat transfer[J]. Nano Energy, 2017, 33:177-183. |
[32] | ZHU J, LUO Y T, TIAN J, et al. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance[J]. ACS Appl. Mater. Interfaces, 2015, 7(20):10660-10665. |
[33] | CHO H J, PRESTON D J, ZHU Y Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nat. Rev. Mater., 2016, 2(2):1-17. |
[34] | EL-BOURAWI M S, DING Z, MA R, et al. Review:a framework for better understanding membrane distillation separation process[J]. J. Membrane Sci., 2006, 285(1):4-29. |
[35] | 田苗苗, 李雪梅, 殷勇, 等. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8):1033-1041. TIAN M M, LI X M, YIN Y, et al. Preparation of superhydrophobic membranes and their application in membrane distillation[J]. Progress in Chemistry, 2015, 27(8):1033-1041. |
[36] | 丁春立, 林帝出, 王德武, 等. 电纺及疏水改性制备CA/SiNPs-FAS超疏水复合膜及膜蒸馏脱盐研究[J]. 化工学报, 2018, 69(4):1774-1782. DING C L, LIN D C, WANG D W, et al. Preparation of superhydrophobic CA/SiNPs-FAS electrospun nanofibrous membranes for direct contact membrane distillation[J]. CIESC Journal, 2018, 69(4):1774-1782. |
[37] | RAZMJOU A, ARIFIN E, DONG G, et al. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation[J]. J. Membrane Sci., 2012, 415/416(10):850-863. |
[38] | ZHANG J, SONG Z Y, LI B A, et al. Fabrication and characterization of superhydrophobic poly(vinylidene fluoride) membrane for direct contact membrane distillation[J]. Desalination, 2013, 324:1-10. |
[39] | CUI Y, LI D W, BAI H. Bioinspired smart materials for directional liquid transport[J]. Ind. Eng. Chem. Res., 2017, 56(17):4887-4898. |
[40] | XUE Z, WANG S, LIN L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation[J]. Adv. Mater., 2011, 23(37):4270-4273. |
[41] | SHI Z, ZHANG W B, ZHANG F, et al. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films[J]. Adv. Mater., 2013, 25(17):2422-2427. |
[42] | GEYER F, SCHONECKER C, BUTT H J, et al. Enhancing CO2 capture using robust superomniphobic membranes[J]. Adv. Mater., 2016, 29(5):1-6. |
[43] | WANG L, ZHAO Y, TIAN Y, et al. A general strategy for the separation of immiscible organic liquids by manipulating the surface tensions of nanofibrous membranes[J]. Angew. Chem., 2015, 127(49):14732-14737. |
[44] | CAO Z F, P Q, PEI C, et al. Super-hydrophobic coating used in corrosion protection of metal material:review, discussion and prospects[J]. Metallurgical Res. Tech., 2017, 114(2):1-11. |
[45] | FIHRI A, BOVERO E, AL-SHAHRANI, et al. Recent progress in superhydrophobic coatings used for steel protection:a review[J]. Colloids Surfaces A, 2017, 520:378-390. |
[46] | SU C H, LI J, GENG,H B, et al. Fabrication of an optically transparent super-hydrophobic surface via embedding nano-silica[J]. Appl. Surf. Sci., 2006, 253(5):2633-2636. |
[47] | BHAGAT S D, KIM Y, AHN Y. Room temperature synthesis of water repellent silica coatings by the dip coat technique[J]. Appl. Surf. Sci., 2006, 253(4):2217-2221. |
[48] | CHEN L J, CHEN M, ZHOU H D, et al. Preparation of super-hydrophobic surface on stainless steel[J]. Appl. Surf. Sci., 2008, 255(5):3459-3462. |
[49] | RIXENS B, SEVERAC1 R, BOUTEVIN B, et al. Migration of additives in polymer coatings:fluorinated additives and poly(vinylidene chloride)-based matrix[J]. Polymer, 2005, 46(11):3579-3587. |
[50] | BURRIS D L, SAWYER W G. Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles[J]. Wear, 2006, 260(7):915-918. |
[51] | CHEN W X, LI F, HAN G, et al. Tribological behavior of carbon-nanotube-filled PTFE composites[J]. Tribology Letters, 2003, 15(3):275-278. |
[52] | ZHANG H J, ZHANG Z Z, GUO F, et al. Enhanced wear properties of hybrid PTFE/cotton fabric composites filled with functionalized multi-walled carbon nanotubes[J]. Mater. Chem. Phys., 2009, 116(1):183-190. |
[53] | TANG Y C, YANG J, YIN L T, et al. Fabrication of superhydrophobic polyurethane/MoS2 nanocomposite coatings with wear-resistance[J]. Colloids Surfaces A, 2014, 459:261-266. |
[54] | LUO Z Z, ZHANG Z Z, HU L T, et al. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process[J]. Adv. Mater., 2008, 20(5):970-974. |
[55] | HU Z Y, WANG H Y, ZHU Y X, et al. Rapid development of thickness-controllable superamphiphobic coating on the inner wall of long narrow pipes[J]. AIChE Journal, 2017, 63(9):3636-3641. |
[56] | 李春曦, 张硕, 薛全喜, 等. 基于抛物线形气-液界面的超疏水微通道减阻特性[J]. 化工学报, 2016, 67(10):4126-4134. LI C X, ZHANG S, XUE Q X, et al. Drag reduction of superhydrophobic microchannels based on parabolic gas-liquid interfaces[J]. CIESC Journal, 2016, 67(10):4126-4134. |
[57] | JU J, BAI H, ZHENG Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nat. Commun., 2012, 3(4):1247 |
[58] | JU J, XIAO K, BAI H, et al. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection[J]. Adv. Mater., 2013, 25(41):5937-5942. |
[59] | CAO M Y, JU J, LI K, et al. Facile and large-scale fabrication of a cactus-inspired continuous fog collector[J]. Adv. Mater., 2014, 24(21):3235-3240. |
[60] | ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281):640-643. |
[61] | BAI H, JU J, JIANG L, et al. Large-scale fabrication of bioinspired fibers for directional water collection[J]. Small, 2011, 7(24):3429-3433. |
[62] | XUE Y, CHEN Y, WANG T, et al. Directional size-triggered microdroplet target transport on gradient-step fibers[J]. J. Mater. Chem. A, 2014, 2(20):7156-7160. |
[63] | MALIK F T, CLEMENT R M, GRIFFITHS P, et al. Hierarchical structures of cactus spines that aid in the directional movement of dew droplets[J]. Phil. Trans. R. Soc., 2016, 374(2073):1-16. |
[64] | HENG X, LUO C. Bioinspired plate-based fog collectors[J]. ACS Appl. Mater. Interfaces, 2014, 6(18):16257-16266. |
[65] | GENG H, BAI H Y, FAN Y Y, et al. Unidirectional water delivery on a superhydrophilic surface with two-dimensional asymmetrical wettability barriers[J]. Mater. Horiz., 2018, 5(2):303-308. |
[66] | CAO M Y, JIN X, PENG Y, et al. Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia[J]. Adv. Mater., 2017, 29(23):1606869. |
[67] | ZHANG Z H, ZHANG B, MA H Y, et al. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment[J]. ACS Nano, 2018, 12(2):2048-2055. |
[68] | MA H Y, CAO M Y, ZHANG C H, et al. Directional and continuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments[J]. Adv. Funct. Mater., 2018, 28(7):1705091. |
[69] | LU Z Y, ZHU W, YU X Y, et al. Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoS2 nanostructured electrodes[J]. Adv. Mater., 2014, 26(17):2683-2687. |
[70] | LIU Z Y, SUN M, XU T H, et al. Superaerophobic electrodes for direct hydrazine fuel cells[J]. Adv. Mater., 2015, 27(14):2361-2366. |
[71] | LEI Y J, SUN R Z, ZHANG X C, et al. Oxygen-rich enzyme biosensor based on superhydrophobic electrode[J]. Adv. Mater., 2016, 28(7):1477-1481. |
[72] | XU C L, XIANG Q, SONG Z Q, et al. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection[J]. Nanoscale, 2016, 8(14):7391-7395. |
[73] | SHENG X, LIU Z, ZENG R S, et al. Enhanced photocatalytic reaction at air-liquid-solid joint interfaces[J]. J. Am. Chem. Soc., 2017, 139(36):12402-12405. |
[74] | ZHANG Y L, WEI S, LIU F J, et al. Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds[J]. Nano Today, 2009, 4(2):135-143. |
[75] | LIU F J, LI W, SUN Q, et al. Transesterification to biodiesel with superhydrophobic porous solid base catalysts[J]. Chemsuschem, 2011, 4(8):1059-1062. |
[76] | LIU F J, WANG L, SUN Q, et al. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers-heterogeneous catalysts that are faster than homogeneous catalysts[J]. J. Am. Chem. Soc., 2012, 134(41):16948-16950. |
[77] | LIU F J, HUANG K, ZHENG A M, et al. Hydrophobic solid acids and their catalytic applications in green and sustainable chemistry[J]. ACS Catal., 2018, 8(1):372-391. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||