化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1913-1922.DOI: 10.11949/j.issn.0438-1157.20181394
收稿日期:
2018-11-22
修回日期:
2018-12-18
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
沈来宏
作者简介:
<named-content content-type="corresp-name">闫景春</named-content>(1993—),男,博士研究生,<email>nick_vujicic@163.com</email>|沈来宏(1965—),男,教授,<email>lhshen@seu.edu.cn</email>
基金资助:
Jingchun YAN(),Laihong SHEN(),Shouxi JIANG,Huijun GE
Received:
2018-11-22
Revised:
2018-12-18
Online:
2019-05-05
Published:
2019-05-05
Contact:
Laihong SHEN
摘要:
采用连续提取法对新疆准东高钠煤进行萃取处理,制备含有不同存在形式钠元素的准东煤样品,在小型流化床上考察了水溶性钠、醋酸铵溶性钠和稀盐酸溶性钠对于准东煤化学链燃烧特性的影响。结果表明,去除水溶性钠后准东煤化学链燃烧产物中含碳气体相对浓度显著提高,相同时刻碳转化率明显提高。而经过醋酸铵和稀盐酸处理后的准东煤相比未处理的准东煤,其化学链燃烧反应性能显著降低。对四种不同处理程度准东煤焦的等温气化反应进行动力学分析表明,WW-ZDJ与水蒸气的气化反应的活化能最小,HAW-ZDJ的气化反应活化能最大。水溶性钠对于准东煤化学链燃烧过程具有抑制作用,而醋酸铵和稀盐酸溶性的钠在准东煤的化学链燃烧过程中促进作用显著。
中图分类号:
闫景春, 沈来宏, 蒋守席, 葛晖骏. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913-1922.
Jingchun YAN, Laihong SHEN, Shouxi JIANG, Huijun GE. Chemical looping combustion of high-sodium coal and gasification kinetics of coal char[J]. CIESC Journal, 2019, 70(5): 1913-1922.
Compositions | Contents |
---|---|
Fe2O3 | 83.25 |
SiO2 | 7.06 |
Al2O3 | 5.33 |
CaO | 0.23 |
P2O5 | 0.29 |
TiO2 | 0.09 |
K2O | 0.03 |
SO3 | 0.25 |
others | 3.47 |
表1 天然铁矿石载氧体的化学组成
Table 1 Elemental composition of fresh hematite oxygen carrier/%(mass)
Compositions | Contents |
---|---|
Fe2O3 | 83.25 |
SiO2 | 7.06 |
Al2O3 | 5.33 |
CaO | 0.23 |
P2O5 | 0.29 |
TiO2 | 0.09 |
K2O | 0.03 |
SO3 | 0.25 |
others | 3.47 |
工业分析/%(mass, ad) | 元素分析/%(mass, ad) | |||||||
---|---|---|---|---|---|---|---|---|
M | V | FC | A | C | H | O | N | S |
14.58 | 28.05 | 53.03 | 6.34 | 64.18 | 4.302 | 9.751 | 0.50 | 0.347 |
表2 准东煤的工业分析和元素分析
Table 2 Proximate and ultimate analysis of ZD raw coal
工业分析/%(mass, ad) | 元素分析/%(mass, ad) | |||||||
---|---|---|---|---|---|---|---|---|
M | V | FC | A | C | H | O | N | S |
14.58 | 28.05 | 53.03 | 6.34 | 64.18 | 4.302 | 9.751 | 0.50 | 0.347 |
CaO | SiO2 | SO3 | Fe2O3 | Al2O3 | Na2O | MgO | TiO2 | K2O | Others |
---|---|---|---|---|---|---|---|---|---|
21.55 | 16.56 | 13.99 | 14.05 | 9.88 | 9.22 | 5.75 | 1.75 | 0.51 | 6.74 |
表3 准东煤灰的成分组成
Table 3 Elemental composition analysis of ZD ash/%(mass)
CaO | SiO2 | SO3 | Fe2O3 | Al2O3 | Na2O | MgO | TiO2 | K2O | Others |
---|---|---|---|---|---|---|---|---|---|
21.55 | 16.56 | 13.99 | 14.05 | 9.88 | 9.22 | 5.75 | 1.75 | 0.51 | 6.74 |
样品 | 元素分析 /%(mass, ad) | |||
---|---|---|---|---|
C | H | N | S | |
ZDJ | 81.06 | 3.147 | 0.76 | 1.613 |
WW-ZDJ | 80.43 | 2.977 | 0.96 | 1.071 |
AAW-ZDJ | 82.28 | 3.403 | 0.41 | 1.719 |
HAW-ZDJ | 79.71 | 2.876 | 1.01 | 1.48 |
表4 四种煤焦的元素分析
Table 4 Ultimate analysis of coal char samples
样品 | 元素分析 /%(mass, ad) | |||
---|---|---|---|---|
C | H | N | S | |
ZDJ | 81.06 | 3.147 | 0.76 | 1.613 |
WW-ZDJ | 80.43 | 2.977 | 0.96 | 1.071 |
AAW-ZDJ | 82.28 | 3.403 | 0.41 | 1.719 |
HAW-ZDJ | 79.71 | 2.876 | 1.01 | 1.48 |
Sample | Water-soluble | HAc-soluble | HCl-soluble | Insoluble | Total |
---|---|---|---|---|---|
ZD | 1350 (58.70) | 359 (15.61) | 168 (7.30) | 423 (18.39) | 2300 (100) |
表5 准东煤中钠的含量
Table 5 Analysis of sodium in ZD sample/(μg/g)
Sample | Water-soluble | HAc-soluble | HCl-soluble | Insoluble | Total |
---|---|---|---|---|---|
ZD | 1350 (58.70) | 359 (15.61) | 168 (7.30) | 423 (18.39) | 2300 (100) |
图5 分别以未处理准东煤(a)、水洗后准东煤(b)、醋酸铵洗后准东煤(c)和稀盐酸洗后准东煤(d)为燃料,水蒸气为气化介质,反应温度为900℃时的相对气体浓度
Fig.5 Concentrations of gaseous products during CLC process of ZD (a), WW-ZD (b), AAW-ZD (c), HAW-ZD (d) with steam as gasification agent at 900℃
图6 900℃下分别以ZD、WW-ZD、AAW-ZD和HAW-ZD为燃料时的碳转化率随时间的变化
Fig.6 Carbon conversion efficiency during typical reduction process of CLC for ZD, WW-ZD, AAW-ZD and HAW-ZD
反应模型 | 积分形式 | 微分形式 | 相关系数R | |||
---|---|---|---|---|---|---|
ZDJ | WW-ZDJ | AAW-ZDJ | HAW-ZDJ | |||
一维扩散 | | | 0.9473 | 0.9670 | 0.9940 | 0.9599 |
二维扩散(柱对称) | | | 0.9644 | 0.9721 | 0.9930 | 0.9564 |
三维扩散(球对称) | | | 0.9764 | 0.9720 | 0.9883 | 0.9427 |
随机核化(n=1) | | | 0.9752 | 0.9682 | 0.9940 | 0.9689 |
随机核化(n=2) | | | 0.9739 | 0.9606 | 0.9826 | 0.9726 |
随机核化(n=3) | | | 0.9722 | 0.9568 | 0.9720 | 0.9673 |
收缩核模型(柱对称) | | | 0.9701 | 0.9703 | 0.9894 | 0.9713 |
收缩核模型(球对称) | | | 0.9820 | 0.9876 | 0.9994 | 0.9990 |
表6 反应动力学模型表达式及其相关性系数
Table 6 Reaction kinetics models and correlation coefficients
反应模型 | 积分形式 | 微分形式 | 相关系数R | |||
---|---|---|---|---|---|---|
ZDJ | WW-ZDJ | AAW-ZDJ | HAW-ZDJ | |||
一维扩散 | | | 0.9473 | 0.9670 | 0.9940 | 0.9599 |
二维扩散(柱对称) | | | 0.9644 | 0.9721 | 0.9930 | 0.9564 |
三维扩散(球对称) | | | 0.9764 | 0.9720 | 0.9883 | 0.9427 |
随机核化(n=1) | | | 0.9752 | 0.9682 | 0.9940 | 0.9689 |
随机核化(n=2) | | | 0.9739 | 0.9606 | 0.9826 | 0.9726 |
随机核化(n=3) | | | 0.9722 | 0.9568 | 0.9720 | 0.9673 |
收缩核模型(柱对称) | | | 0.9701 | 0.9703 | 0.9894 | 0.9713 |
收缩核模型(球对称) | | | 0.9820 | 0.9876 | 0.9994 | 0.9990 |
Sample | E/(kJ/mol) | A×10-4/min | R 2 |
---|---|---|---|
ZDJ | 146.98 | 11.30 | 0.982 |
WW-ZDJ | 104.68 | 0.11 | 0.988 |
AAW-ZDJ | 156.45 | 27.32 | 0.999 |
HAW-ZDJ | 204.66 | 1266.05 | 0.999 |
表7 煤焦气化的动力学参数
Table 7 Kinetic parameters for coal char gasification
Sample | E/(kJ/mol) | A×10-4/min | R 2 |
---|---|---|---|
ZDJ | 146.98 | 11.30 | 0.982 |
WW-ZDJ | 104.68 | 0.11 | 0.988 |
AAW-ZDJ | 156.45 | 27.32 | 0.999 |
HAW-ZDJ | 204.66 | 1266.05 | 0.999 |
1 | Kavouridis K , Koukouzas N . Coal and sustainable energy supply challenges and barriers[J]. Energy Policy, 2008, 36(2): 693-703. |
2 | International Energy Agency . World Energy Outlook 2016[M]. Paris Google Scholar, 2016. |
3 | Ye D P , Agnew J B , Zhang D K . Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies[J]. Fuel, 1998, 77(11): 1209-1219. |
4 | Zhang D K , Agnew J B , Manzoori A R . Fluid bed gasification of Australian low-rank coal[C]//Proceedings of the Japan-Australia Joint Technical Meeting on Coal. Adelaide, Australia, 1995: 6-7. |
5 | 兰泽全 . 煤和黑液水煤浆沾污结渣机理及灰沉积动态特性研究[D]. 杭州: 浙江大学, 2004. |
Lan Z Q . Black liquor coal water slurry’s combustion characteristics and fouling/slagging performance[D]. Hangzhou: Zhejiang University, 2004. | |
6 | 周永刚, 薛志亮, 陈坚强, 等 . 高钠煤掺烧对某 660MW 机组锅炉炉膛结渣影响的测量[J]. 热力发电, 2017, 46(7): 38-45. |
Zhou Y G , Xue Z L , Chen J Q , et al . Influence of cofiring high sodium coal on slagging in furnace of a 660 MW unit ultra-supercritical boiler[J]. Thermal Power Generation,2017, 46(7): 38-45. | |
7 | Wang L , Hustad J E , Ø Skreiberg , et al . A critical review on additives to reduce ash related operation problems in biomass combustion applications[J]. Energy Procedia, 2012, 20: 20-29. |
8 | 沈铭科, 邱坤赞, 黄镇宇, 等 . 准东煤掺烧高岭土对固钠率及灰熔融特性影响研究[J]. 燃料化学学报, 2015, 43(9): 1044-1051. |
Shen M K , Qiu K Z , Huang Z Y , et al . Influence of kaolin on sodium retention and ash fusion characteristic during combustion of Zhundong coal[J]. J. Fuel Chem. Technol., 2015, 43(9): 1044-1051. | |
9 | Lewis W K , Gilliland E R . Production of pure carbon dioxide: US 2665972 [P]. 1954. |
10 | Richter H , Knoche K . Reversibility of combustion processes[J]. ACS Symp. Ser., 1983, 235: 71-86. |
11 | Ishida M , Jin H . A new advanced power-generation system using chemical-looping combustion[J]. Energy, 1994, 19(4): 415-422. |
12 | Song T , Shen L . Review of reactor for chemical looping combustion of solid fuels[J]. International Journal of Greenhouse Gas Control, 2018, 76: 92-110. |
13 | Yan J , Shen L , Ou Z , et al . Enhancing the performance of iron ore by introducing K and Na ions from biomass ashes in a CLC process[J]. Energy, 2019, 167: 168-180. |
14 | Gu H , Shen L , Zhang S , et al . Enhanced fuel conversion by staging oxidization in a continuous chemical looping reactor based on iron ore oxygen carrier[J]. Chemical Engineering Journal, 2018, 334: 829-836. |
15 | 葛晖骏, 沈来宏, 顾海明, 等 . 天然铁矿石为载氧体的准东煤化学链燃烧特性[J]. 燃料化学学报, 2016, 44(2): 184-191. |
Ge H J , Shen L H , Gu H M , et al . Characteristics of Zhundong coal in chemical looping combustion with natural hematite as oxygen carrier[J]. J. Fuel Chem. Technol., 2016, 44(2): 184-191. | |
16 | Cuvilas C A , Yang W . Spruce pretreatment for thermal application: water, alkaline, and diluted acid hydrolysis[J]. Energy & Fuels, 2012, 26(10): 6426-6431. |
17 | Zhang J , Han C L , Yan Z , et al . The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion[J]. Energy & Fuels, 2001, 15(4): 786-793. |
18 | Sugawara K , Enda Y , Inoue H , et al . Dynamic behavior of trace elements during pyrolysis of coals[J]. Fuel, 2002, 81(11/12): 1439-1443. |
19 | Marek E J , Zheng Y , Scott S A . Enhancement of char gasification in CO2 during chemical looping combustion[J]. Chemical Engineering Journal, 2018, 354: 137-148. |
20 | Abad A , de Las Obras-Loscertales M , García-Labiano F , et al . In situ gasification chemical-looping combustion of coal using limestone as oxygen carrier precursor and sulphur sorbent[J]. Chemical Engineering Journal, 2017, 310: 226-239. |
21 | Yan J , Shen L , Jiang S , et al . Combustion performance of sewage sludge in a novel CLC system with a two-stage fuel reactor[J]. Energy & Fuels, 2017, 31(11): 12570-12581. |
22 | Wei X , Huang J , Liu T , et al . Transformation of alkali metals during pyrolysis and gasification of a lignite[J]. Energy & Fuels, 2008, 22(3): 1840-1844. |
23 | Gu H , Shen L , Zhong Z , et al . Interaction between biomass ash and iron ore oxygen carrier during chemical looping combustion[J]. Chemical Engineering Journal, 2015, 277: 70-78. |
24 | Zhang S , Shen L , Xiao J , et al . Effects of alkali and transition metals loaded on iron ore on chemical looping combustion with coal[C]//Proceedings of the 9th China–Korea Workshop on Clean Energy Technology. Huangshan, China, 2012. |
25 | 梁秀俊, 阎维平 . O2/CO2 气氛下煤焦燃烧反应动力学特性试验研究[J]. 华东电力, 2009, (12): 2104-2018. |
Liang X J , Yan W P . Experimental study of kinetics of coal char combustion characteristics under mixed O2/CO2 atmosphere[J]. East China Electric Power, 2009, (12): 2104-2018. | |
26 | 安国银, 米翠丽 . 几种恒定高温下混煤燃烧反应动力学模型对比[J]. 热力发电, 2016, (5): 9-15. |
An G Y , Mi C L . Comparative study on several combustion dynamic models of coal blends at constant high temperature[J]. Thermal Power Generation, 2016, (5): 9-15. | |
27 | Smith I W . The combustion rates of coal chars: a review[J]. Symposium (International) on Combustion, 1982, 19(1): 1045-1065. |
28 | 任轶舟, 王亦飞, 朱龙雏, 等 . 高温煤焦气化反应的 Langmuir-Hinshelwood 动力学模型[J]. 化工学报, 2014, 65(10): 3906-3915. |
Ren Y Z , Wang Y F , Zhu L C , et al . Langmuir-Hinshelwood kinetic model of high temperature coal char gasification reaction[J]. CIESC Journal, 2014, 65(10): 3906-3915. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[3] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[4] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[5] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[6] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
[7] | 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857. |
[8] | 何聪, 钟文琪, 周冠文, 陈曦. 高海拔地区水泥生料悬浮炉分解特性研究[J]. 化工学报, 2022, 73(5): 2120-2129. |
[9] | 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221. |
[10] | 杨霄, 丁锐, 李墨含, 宋正昶. 氧浓度对微通道内甲烷均相/非均相耦合反应特性的影响[J]. 化工学报, 2022, 73(12): 5427-5437. |
[11] | 龚翔, 李林森, 姜召. PdCo/SiO2双金属催化剂用于杂环储氢载体的高效脱氢[J]. 化工学报, 2022, 73(10): 4448-4460. |
[12] | 张利合, 张凡, 李昌伦, 许德平, 徐振刚, 王永刚. BGL煤气化动力学模型构建与验证[J]. 化工学报, 2022, 73(10): 4668-4678. |
[13] | 赵旭, 卜昌盛, 王昕晔, 张鑫, 程晓磊, 王乃继, 朴桂林. 铁基载氧体辅助无烟煤焦富氧燃烧动力学分析[J]. 化工学报, 2022, 73(1): 384-392. |
[14] | 王婷婷, 曾玺, 韩振南, 王芳, 武鹏, 许光文. 微型流化床中生物质半焦水蒸气气化反应特性及动力学研究[J]. 化工学报, 2022, 73(1): 294-307. |
[15] | 陈旭杰, 吕喜蕾, 史欢欢, 郑丽萍, 魏茜文, 田鹏辉, 蒋雨希, 吕秀阳. HBr-MgBr2催化己糖二酸脱水环合制备2,5-呋喃二甲酸的研究[J]. 化工学报, 2021, 72(9): 4658-4664. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||