化工学报 ›› 2019, Vol. 70 ›› Issue (3): 929-936.DOI: 10.11949/j.issn.0438-1157.20181322
收稿日期:
2018-11-12
修回日期:
2018-12-05
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
黄军
作者简介:
<named-content content-type="corresp-name">郭婉婉</named-content>(1993—),女,硕士研究生,<email>13770635576@163.com</email>|黄军(1973—),男,博士,教授,<email>junhuang@njtech.edu.cn</email>
基金资助:
Wanwan GUO(),Ruyue LI,Jun HUANG()
Received:
2018-11-12
Revised:
2018-12-05
Online:
2019-03-05
Published:
2019-03-05
Contact:
Jun HUANG
摘要:
烷基取代的苯醌可用作多种生物活性化合物的功能结构单元。提出了一种在温和条件下,用氧气氧化2,3,6-三甲基苯酚(TMP)得到2,3,5-三甲基-1,4-苯醌(TMQ,维生素E前体)的方法。利用Friedel-Crafts烷基化反应,成功制备了一种基于1,10-菲罗啉的交联多孔聚合物负载铜催化剂Cu/PPhen。采用氮气吸附脱附、SEM、FTIR和XPS对催化剂Cu/PPhen-4进行了一系列的表征,获得了催化剂的基本结构特征。并考察了催化剂的加入量、溶剂、氧气压力、反应温度以及反应时间等因素对Cu/PPhen-4催化氧化制备2,3,5-三甲基-1,4-苯醌的影响,得到最佳的工艺条件。当2,3,6-三甲基苯酚的加入量为136 mg时,催化剂量为150 mg,乙腈量为2 ml,0.5 MPa的氧气,40℃下反应4 h,2,3,5-三甲基-1,4-苯醌的收率可以达到99%。催化剂Cu/PPhen-4具有较好的稳定性,可以回收至少五次,活性几乎没有下降。
中图分类号:
郭婉婉, 李如月, 黄军. 交联菲罗啉负载铜催化剂用于合成三甲基苯醌[J]. 化工学报, 2019, 70(3): 929-936.
Wanwan GUO, Ruyue LI, Jun HUANG. Copper catalyst supported on cross-linked phenanthroline for oxidative synthesis of 2,3,5-trimethyl-1,4-benzoquinone[J]. CIESC Journal, 2019, 70(3): 929-936.
Sample | S BET/(m2?g-1) | V S/(cm3?g-1) |
---|---|---|
PPhen | 381.3 | 0.6 |
Cu/PPhen-4 | 230.8 | 0.4 |
表1 交联聚菲罗啉PPhen及其负载铜催化剂Cu/PPhen-4的比表面积和孔容
Table 1 BET surface and pore volume of PPhen and Cu/PPhen-4
Sample | S BET/(m2?g-1) | V S/(cm3?g-1) |
---|---|---|
PPhen | 381.3 | 0.6 |
Cu/PPhen-4 | 230.8 | 0.4 |
Entry | Catalyst | TMP conversion①/% | TMQ yield②/% |
---|---|---|---|
1 | none | trace | trace |
2 | PPhen | 5 | 4 |
3 | Cu/PPhen-1 | 46 | 45 |
4 | Cu/PPhen-2 | 69 | 67 |
5 | Cu/PPhen-4 | 100 | 99 |
6 | Cu/PPhen-6 | 100 | 99 |
7 | Cu/PPhen-10 | 100 | 98 |
8 | Cu/C | 40 | 38 |
表2 不同催化剂催化氧化TMP得到TMQ
Table 2 Oxidation of 2,3,6-trimethylphenol over different catalysts
Entry | Catalyst | TMP conversion①/% | TMQ yield②/% |
---|---|---|---|
1 | none | trace | trace |
2 | PPhen | 5 | 4 |
3 | Cu/PPhen-1 | 46 | 45 |
4 | Cu/PPhen-2 | 69 | 67 |
5 | Cu/PPhen-4 | 100 | 99 |
6 | Cu/PPhen-6 | 100 | 99 |
7 | Cu/PPhen-10 | 100 | 98 |
8 | Cu/C | 40 | 38 |
1 | Netscher T . Synthesis of vitamin E[J]. Vitamins and Hormones, 2007, 76: 155-202. |
2 | Finsterer J . Stroke-like episodes in coenzyme-Q deficiency may respond to NO-precursors and non-mitochondrion-toxic antiepileptic drugs[J]. Molecular Genetics and Metabolism Reports, 2018, 17: 42. |
3 | Detering T , Linke D , Gounel S , et al . Laccase-catalysed cleavage of malvidin-3-O-galactoside to 2,6-dimethoxy-1,4- benzo- quinone and a coumarin galactoside[J]. Mycol. Prog., 2018, 17(6): 681-690. |
4 | Bodnar Z , Mallat T , Baiker A . Oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone with catalytic amount of CuCl2 [J].J. Mol. Catal. A-Chem., 1996, 110(1): 55-63. |
5 | Saux C . Greener method to obtain a key intermediate of vitamin E over Cu-ZSM-5[J]. Ind. Eng. Chem. Res., 2014, 53(28): 11276-11283. |
6 | Li Y , Liu W , Wu M Z , et al . Oxidation of 2,3,5-trimethylphenol to 2,3,5-trimethylbenzoquinone with aqueous hydrogen peroxide in the presence of spinel CuCo2O4 [J]. J. Mol. Catal. A-Chem., 2006, 261(1): 73-78. |
7 | Chattopadhyay T , Kogiso M , Aoyagi M , et al . Single bilayered organic nanotubes: anchors for production of a reusable catalyst with nickel ions[J]. Green Chem., 2011, 13(5): 1138-1140. |
8 | Evtushok V Y , Suboch A N , Podyacheva O Y . Highly efficient catalysts based on divanadium-substituted polyoxometalate and N‑doped carbon nanotubes for selective oxidation of alkylphenols[J]. ACS Catal., 2018, 8(2): 1297-1307. |
9 | Neeli C K P , Ganjala V S P , Vakati V , et al . V2O5/SBA-15 nanocatalysts for the selective synthesis of 2,3,5-trimethyl-1,4-benzoquinone at room temperature[J]. New J.Chem., 2006, 40(1): 679-686. |
10 | Ivanchikova I D , Maksimchuk N V , Maksimovskaya R I . Highly selective oxidation of alkylphenols to p‑benzoquinones with aqueous hydrogen peroxide catalyzed by divanadium-substituted polyoxotungstates[J]. ACS Catal., 2014, 4(8): 2706-2713. |
11 | Fallah A H , Endud S , Alizadeh A , et al . Metalloporphyrin/dendrimer-decorated MCM-41 biomimetic hybrid catalysts: high stability combined with facile catalyst recyclability[J]. Journal of Porous Materials, 2018, 25(6): 1813-1823. |
12 | Li Y , Zhang P , Wu M Z , et al . An effective oxidation of 2,3,6-trimethylphenol to 2,3,5-trimethylbenzoquinone using Fenton s reagent under mild conditions[J]. Chem. Eng. J., 2009, 146(2): 270-274. |
13 | Kholdeeva O A , Ivanchikova I D , Maksimchuk N V , et al . Environmentally benign oxidation of alkylphenols to p-benzoquinones: a comparative study of various Ti-containing catalysts[J]. Top Catal., 2014, 57(17-20): 1377-1384. |
14 | Lin T H , Chen C C , Jang L Y , et al . Preparation and catalytic properties of mesoporous titanosilicate of cubic Pm3n structure[J]. Micropor. Mesopor. Mat., 2014, 198: 194-202. |
15 | Selvaraj M . Highly active and green mesostructured titanosilicate catalysts synthesized for selective synthesis of benzoquinones[J]. Catal. Sci. Technol., 2014, 4(8): 2674-2684. |
16 | Koreniuk A , Maresz K , Odrozek K , et al . Titania-silica monolithic multichannel microreactors. Proof of concept and fabrication/structure/catalytic properties in the oxidation of 2,3,6-trimethylphenol[J]. Micropor. Mesopor. Mat., 2016, 229: 98-105. |
17 | Ivanchikova I D , Kovalev M K , Mel’gunov M S , et al . User-friendly synthesis of highly selective and recyclable mesoporous titanium-silicate catalysts for the clean production of substituted p-benzoquinones[J]. Catal. Sci. Technol., 2014, 4(1): 200-207. |
18 | Torbina V V , Vodyankin A A , Ivanchikova I D , et al . Support pretreatment effect on the catalytic properties and reusability of silica-supported titania catalysts in 2,3,6-trimethylphenol oxidation with hydrogen peroxide[J]. Kinet. Catal., 2015, 56(3): 370-376. |
19 | Pirovano C , Guidotti M , Santo V D , et al . Use of titanium-containing silica catalysts prepared by rapid and straightforward method in selective oxidations[J]. Catal. Today, 2012, 197(1): 170-177. |
20 | Gao X , An J G , Gu J L , et al . A green template-assisted synthesis of hierarchical TS-1 with excellent catalytic activity and recyclability for the oxidation of 2,3,6-trimethylphenol[J]. Micropor. Mesopor. Mat., 2017, 239: 381-389. |
21 | Podgorsek A , Zupan M , Iskra J . Oxidative halogenation with “green” oxidants: oxygen and hydrogen peroxide[J]. Angew. Chem. Int. Ed., 2009, 48(45): 8424-8450. |
22 | Sheldon R A , Kochi J K . Metal-catalyzed oxidation of organic compounds in the liquid phase: a mechanistic approach[J]. Adv.Catal., 1976, 25: 272-413. |
23 | Sun H J , Harms K , Sundermeyer J . Aerobic oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone with copper(Ⅱ) chloride as catalyst in ionic liquid and structure of the active species[J]. J. Am. Chem. Soc., 2004, 126(31): 9550-9551. |
24 | Sun H J , Li X Y , Sundermeyer J . Aerobic oxidation of phenol to quinone with copper chloride as catalyst in ionic liquid[J]. J. Mol. Catal. A-Chem., 2005, 240(1/2): 119-122. |
25 | Li B , Guan Z H , Wang W , et al . Highly dispersed Pd catalyst locked in knitting aryl network polymers for Suzuki-Miyaura coupling reactions of aryl chlorides in aqueous media[J]. Adv. Mater., 2012, 24(25): 3390-3395. |
26 | Wang X B , Min S X , Das S K , et al . Spatially isolated palladium in porous organic polymers by direct knitting for versatile organic transformations[J]. J. Catal., 2017, 355: 101-109. |
27 | Li Y , Mao F , Chen T , et al . In situ trapped and immobilized palladium nanoparticles as active and clean catalysts for Suzuki-Miyaura reaction[J]. Adv. Synth. Catal., 2015, 357(13): 2827-2832. |
28 | Geng L F , Li Y , Qi Z L , et al . Highly efficient palladium catalysts supported on nitrogen contained polymers for Suzuki-Miyaura reaction[J]. Catal. Commun., 2016, 82: 24-28. |
29 | Chen T , Mao F , Qi Z L , et al . Immobilized palladium nanoparticles within polymers as active catalysts for Suzuki-Miyaura reaction[J]. RSC Adv., 2016, 6(20): 16899-16903. |
30 | Fan H P , Qi Z L , Sui D J , et al . Palladium nanoparticles in cross-linked polyaniline as highly efficient catalysts for Suzuki-Miyaura reactions[J]. Chinese Journal of Catalysis, 2017, 38(3): 589-596. |
31 | Yu Y P , Hu T J , Chen X R , et al . Pd nanoparticles on a porous ionic copolymer: a highly active and recyclable catalyst for Suzuki-Miyaura reaction under air in water[J]. Chem. Commun., 2011, 47(12): 3592-3594. |
32 | Marko I E , Giles P R , Tsukazaki M , et al . Copper-catalyzed oxidation of alcohols to aldehydes and ketones: an efficient, aerobic alternative[J]. Science, 1996, 274(5295): 2044-2046. |
33 | Ten B G J , Arends I W C E , Sheldon R A . Green, catalytic oxidation of alcohols in water[J]. Science, 2000, 287(5458): 1636-1639. |
34 | 黄军, 祁正亮 . 钴催化剂及其制备方法和在催化合成2,3,5-三甲基苯醌中的应用: 107185571A[P]. 2017-09-22. |
Huang J , Qi Z L . The preparation method of cobalt catalyst and its application in catalytic synthesis of 2,3,5-trimethylphenylhy-drazine: 107185571A[P]. 2017-09-22. | |
35 | 黄军, 祁正亮 . 一种铼催化剂及其催化合成2-甲基-1,4-萘醌的方法: 106622325A[P]. 2017-05-10. |
Huang J , Qi Z L . Rhenium catalyst and its catalytic synthesis of 2-methyl-1,4-naphthoquinone: 106622325A[P]. 2017-05-10. | |
36 | 黄军, 李冰 . 一种钒催化剂及其催化合成2,3,5-三甲基苯醌的方法: 104399507A[P]. 2015-03-11. |
Huang J , Li B . Vanadium catalyst and its catalytic synthesis of 2,3,5-trimethylphenylhydrazine: 104399507A[P]. 2015-03-11. | |
37 | 黄军, 周志成 . 一种氧化制备2,3,5-三甲基苯醌的方法: 105693490A[P]. 2016-06-22. |
Huang J , Zhou Z C . The method for preparing 2,3,5-trimethyl-phenylhydrazine by oxidation: 105693490A[P]. 2016-06-22. | |
38 | Xu S J , Song K P , Li T , et al . Palladium catalyst coordinated in knitting N-heterocyclic carbene porous polymers for efficient Suzuki-Miyaura coupling reactions[J]. J. Mater. Chem. A., 2015, 3(3): 1272-1278. |
39 | Zheng T , Wang T , Ma R Q , et al . Influences of isolated fractions of natural organic matter on adsorption of Cu(Ⅱ) by titanate nanotubes[J]. Sci. Total. Environ., 2019, 650(1): 1412-1418. |
40 | Ma Y X , Shao W J , Sun W , et al . One-step fabrication of beta-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb(Ⅱ), Cu(Ⅱ) and methylene blue in aqueous solutions[J]. Appl. Surf. Sci., 2018, 459: 544-553. |
41 | Mao F , Sui D J , Qi Z L , et al . Heterogeneous cobalt catalysts for reductive amination with H2: general synthesis of secondary and tertiary amines[J]. RSC Adv., 2016, 6(96): 94068-94073. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[6] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[7] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[12] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[15] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||