化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1291-1301.DOI: 10.11949/j.issn.0438-1157.20181070
收稿日期:
2018-09-25
修回日期:
2019-01-16
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
徐治国
作者简介:
<named-content content-type="corresp-name">牟帅</named-content>(1992—),男,硕士研究生,<email>moushuai1020@sjtu.edu.cn</email>|徐治国(1978—),男,博士,副研究员,<email>zhiguoxu@sjtu.edu.cn</email>
基金资助:
Shuai MOU(),Changying ZHAO,Zhiguo XU(
)
Received:
2018-09-25
Revised:
2019-01-16
Online:
2019-04-05
Published:
2019-04-05
Contact:
Zhiguo XU
摘要:
以局部表面改性的紫铜直方柱和梯度方柱阵列为研究对象,实验研究了表面润湿性、表面形貌和表面活性剂对池沸腾换热性能和气泡生长特性的影响。实验工质为去离子水,浓度分别为100、200、400、800 mg·L-1的异丙醇溶液和正庚醇溶液。实验结果表明:方柱阵列表面镀银之后润湿性变差,表面产生的气泡数量减少。向去离子水中添加异丙醇或正庚醇后,在热通量为66.1~202 kW·m-2时,气泡脱离直径变小、数目减少,而当热通量增至413 kW·m-2时,活性剂能够有效阻碍气泡合并,故池沸腾传热系数随着浓度增加先减小后增大。上下层宽分别0.5 mm和1 mm、间距为2 mm的梯度方柱阵列结构有助于气泡的合并,但由于促进了固体表面气膜的形成,从而降低了沸腾换热性能。
中图分类号:
牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301.
Shuai MOU, Changying ZHAO, Zhiguo XU. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface[J]. CIESC Journal, 2019, 70(4): 1291-1301.
1 | Liang G , Mudawar I . Pool boiling critical heat flux (CHF)(1): Review of mechanisms, models, and correlations[J]. International Journal of Heat & Mass Transfer, 2018, 117: 1352-1367. |
2 | Song G , Davies P A , Wen J , et al . Nucleate pool boiling heat transfer of SES36 fluid on nanoporous surfaces obtained by electrophoretic deposition of Al2O3 [J]. Applied Thermal Engineering, 2018, 141: 143-152. |
3 | Kim S H , Lee G C , Kang J Y , et al . A study of nucleate bubble growth on microstructured surface through high speed and infrared visualization[J]. International Journal of Multiphase Flow, 2017, 95: 12-21. |
4 | 吴慧英, 吴信宇 . 水/乙醇混合工质在硅基微通道中的流动与换热[J]. 化工学报, 2008, 59(11): 2706-2712. |
Wu H Y , Wu X Y . Flow and heat transfer of water/ethanol mixed working fluid in silicon-based microchannels[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(11): 2706-2712. | |
5 | Park S D , Lee S W , Kang S , et al . Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux[J]. Applied Physics Letters, 2010, 97(2): 718. |
6 | 纪献兵, 徐进良 . 表面活性剂对池沸腾换热的影响[J]. 工程热物理学报, 2008, 29(12): 2049-2052. |
Ji X B , Xu J L . Effects of surfactants on pool boiling heat transfer [J]. Journal of Engineering Thermophysics, 2008, 29(12): 2049-2052. | |
7 | 柴永志, 张伟, 李亚, 等 . 非均匀润湿性微通道表面池沸腾换热特性[J]. 化工学报, 2017, 68(5): 1852-1859. |
Chai Y Z , Zhang W , Li Y , et al . Surface pool boiling heat transfer characteristics of non-uniform wettability microchannels[J]. CIESC Journal, 2017, 68(5): 1852-1859. | |
8 | Hendricks T J , Krishnan S , Choi C , et al . Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper [J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3357-3365. |
9 | 钟达文, 孟继安, 李志信 . 朝下沟槽结构表面池沸腾换热[J]. 化工学报, 2016, 67(9): 3559-3565. |
Zhong D W , Meng J A , Li Z X . Boiling heat transfer in the surface of a trench structure[J]. CIESC Journal, 2016, 67(9): 3559-3565. | |
10 | 薛淑文, 李雨晴, 肖卓楠, 等 . 水基 SiO2 纳米流体沸腾换热特性[J]. 化工学报, 2017, 68(11): 4147-4153. |
Xue S W , Li Y Q , Xiao Z N , et al . Boiling heat transfer characteristics of water-based SiO2 nanofluids[J]. CIESC Journal, 2017, 68(11): 4147-4153. | |
11 | Ciloglu D , Bolukbasi A . A comprehensive review on pool boiling of nanofluids[J]. Applied Thermal Engineering, 2015, 84: 45-63. |
12 | Fang X , Wang R , Chen W , et al . A review of flow boiling heat transfer of nanofluids[J]. Applied Thermal Engineering, 2015, 91: 1003-1017. |
13 | Wu J M , Zhao J . A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application[J]. Progress in Nuclear Energy, 2013, 66: 13-24. |
14 | 徐立, 赖喜锐, 王斌, 等 . 脉冲加热下微加热器在 Al2O3纳米流体中的沸腾换热[J]. 化工学报, 2011, 62(3): 678-684. |
Xu L , Lai X R , Wang B , et al . Boiling heat transfer of micro-heaters in Al2O3 nanofluids under pulse heating [J]. CIESC Journal, 2011, 62(3): 678-684. | |
15 | Manetti L L , Stephen M T , Beck P A , et al . Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3 -water based nanofluid[J]. Experimental Thermal and Fluid Science, 2017 , 87: 191-200. |
16 | Karimzadehkhouei M , Shojaeian M , Şendur K , et al . The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling[J]. International Journal of Heat and Mass Transfer, 2017, 109: 157-166. |
17 | Özbey A , Karimzadehkhouei M , Sefiane K , et al . Changing bubble dynamics in subcooled boiling with TiO2, nanoparticles on a platinum wire[J]. Journal of Molecular Liquids, 2017, 242: 456-470. |
18 | 程立新, 陈听宽 . 沸腾传热强化技术及方法[J]. 化工装备技术, 1999, 20(1): 30-34. |
Cheng L X , Chen T K . Boiling heat transfer enhancement technology and method[J]. Chemical Industry Equipment Technology, 1999, 20(1): 30-34. | |
19 | 陈宏霞, 黄林滨, 宫逸飞 . 多孔结构及表面浸润性对池沸腾传热影响的研究进展[J]. 化工进展, 2017, 36(8): 2798-2808. |
Chen H X , Huang L B , Gong Y F . Research progress on the effect of porous structure and surface wettability on pool boiling heat transfer[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2798-2808. | |
20 | Hsu C C , Lee M R , Wu C H , et al . Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling[J]. Applied Thermal Engineering, 2017, 112: 1187-1194. |
21 | Betz A R , Xu J , Qiu H , et al . Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling[J]. Applied Physics Letters, 2010, 97(14): 141909. |
22 | 孔新, 魏进家, 张永海 . 亲疏水表面换热性能及其沸腾现象的微细化研究[J]. 工程热物理学报, 2018, 39(6): 1373-1378. |
Kong X , Wei J J , Zhang Y H . Study on surface heat transfer performance of hydrophobic surface and micronization of boiling phenomenon[J]. Journal of Engineering Thermophysics, 2018, 39(6): 1373-1378. | |
23 | Forrest E , Williamson E , Buongiorno J , et al . Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3): 58-67. |
24 | Rioux R P , Nolan E C , Li C H . A systematic study of pool boiling heat transfer on structured porous surfaces: from nanoscale through microscale to macroscale[J]. AIP Advances, 2014, 4(11): 117133. |
25 | Chu K H , Soo J Y , Enright R , et al . Hierarchically structured surfaces for boiling critical heat flux enhancement[J]. Applied Physics Letters, 2013, 102(15): 151602. |
26 | 张伟, 牛志愿, 李亚, 等 . 石墨烯/镍复合微结构表面的池沸腾传热特性[J]. 化工进展, 2018, 37(10): 3759-3765. |
Zhang W , Niu Z Y , Li Y , et al . Pool boiling heat transfer characteristics of graphene/nickel composite microstructures[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3759-3765. | |
27 | Shin S , Seok Kim B , Choi G , et al . Double-templated electrodeposition: simple fabrication of micro-nano hybrid structure by electrodeposition for efficient boiling heat transfer[J]. Applied Physics Letters, 2012, 101(25): 251909. |
28 | Kim D E , Park S C , Yu D I , et al . Enhanced critical heat flux by capillary driven liquid flow on the well-designed surface[J]. Applied Physics Letters, 2015, 107(2): 023903. |
29 | Zou A , Maroo S C . Critical height of micro/nano structures for pool boiling heat transfer enhancement[J]. Applied Physics Letters, 2013, 103(22): 221602. |
30 | 魏进家, 张永海 . 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1): 97-108. |
Wei J J , Zhang Y H . Review of surface enhanced boiling heat transfer on columnar microstructures[J]. CIESC Journal, 2016, 67(1): 97-108. | |
31 | Lu M C , Huang C H , Huang C T , et al . A modified hydrodynamic model for pool boiling CHF considering the effects of heater size and nucleation site density[J]. International Journal of Thermal Sciences, 2015, 91: 133-141. |
32 | 郭兆阳, 徐鹏, 王元华, 等 . 烧结型多孔表面管外池沸腾传热特性[J]. 化工学报, 2012, 63(12): 3798-3804. |
Guo Z Y , Xu P , Wang Y H , et al . Boiling heat transfer characteristics of sintered porous surface tube outside the tube[J]. CIESC Journal, 2012, 63(12): 3798-3804. | |
33 | Xu Z G , Zhao C Y . Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions[J]. Applied Thermal Engineering, 2016, 100: 68-77. |
34 | Lee C Y , Bhuiya M M H , Kim K J . Pool boiling heat transfer with nano-porous surface[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 4274-4279. |
35 | Kong X , Zhang Y , Wei J . Experimental study of pool boiling heat transfer on novel bistructured surfaces based on micro-pin-finned structure[J]. Experimental Thermal and Fluid Science, 2018, 91: 9-19. |
36 | 杨世铭, 陶文铨 . 传热学 [M]. 4版.北京: 高等教育出 版 社, 2006: 398-399. |
Yang S M , Tao W Q . Heat Transfer [M].4th ed. Beijing: Higher Education Press, 2006: 398-399. |
[1] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[2] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[3] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[4] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[5] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[6] | 陈建勋, 刘金平, 许雄文, 余银豪. 一种新型环路重力热管的数值模拟和性能优化[J]. 化工学报, 2023, 74(2): 721-734. |
[7] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[8] | 苏晓辉, 张弛, 徐志锋, 金辉, 王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究[J]. 化工学报, 2022, 73(5): 1974-1985. |
[9] | 常楚鑫, 徐黎婷, 殷嘉伦, 雒先, 贾洪伟. 浸没状态下的低压电润湿行为研究[J]. 化工学报, 2022, 73(4): 1673-1682. |
[10] | 徐一鸣, 袁华, 刘素丽, 李平, 严佩蓉, 赵曦, 卢俊华, 赵唯, 张学兰. 微通道反应器中工业混合直链烷基苯磺酸盐的连续合成工艺研究[J]. 化工学报, 2022, 73(3): 1184-1193. |
[11] | 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165. |
[12] | 杨振, 姚元鹏, 李昀, 吴慧英. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101. |
[13] | 刘成治, 李春曦, 周静宜, 叶学民. 溶质Marangoni效应对降膜流动稳定性的影响[J]. 化工学报, 2022, 73(12): 5405-5413. |
[14] | 张兰河, 汪露, 李梓萌, 唐宏, 郭静波, 贾艳萍, 张明爽. 电极超滤膜生物反应器处理阴离子表面活性剂废水[J]. 化工学报, 2022, 73(10): 4679-4691. |
[15] | 侯晓松, 刘晨星, 任爱玲, 郭斌, 郭渊明. 超声雾化/表面活性剂强化吸收耦合生物洗涤净化甲苯废气[J]. 化工学报, 2022, 73(10): 4692-4706. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 805
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 622
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||