化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 217-225.DOI: 10.11949/j.issn.0438-1157.20181516
收稿日期:
2018-12-26
修回日期:
2019-01-07
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
鹿院卫
作者简介:
<named-content content-type="corresp-name">于强</named-content>(1988—),男,博士研究生,<email>yuqiang@emails.bjut.edu.cn</email>|鹿院卫(1971—),女,博士,教授,<email>luyuanwei@bjut.edu.cn</email>
基金资助:
Qiang YU(),Yuanwei LU(
),Xiaopan ZHANG,Yuting WU
Received:
2018-12-26
Revised:
2019-01-07
Online:
2019-03-31
Published:
2019-03-31
Contact:
Yuanwei LU
摘要:
为了得到SiO2纳米粒子含量对SiO2/NaNO3-KNO3/EG复合蓄热材料比热容和热导率的影响,通过机械分散法,采用NaNO3-KNO3和不同质量分数(0.1%,0.5%,1%,2%,3%)的SiO2纳米粒子所形成的熔盐纳米材料作为蓄热材料,膨胀石墨(EG)作为基体材料,制备出纳米SiO2/NaNO3-KNO3/EG复合材料。对复合材料的比热容和热导率进行了测量,同时用扫描电镜对其微观结构特征进行了分析。结果表明,SiO2纳米粒子的质量分数为1%时,复合材料的平均比热容和热导率分别为3.92 J/(g·K)和8.47 W/(m·K),与其他纳米SiO2添加比例相比,其比热容和热导率分别提高了1.37~2.17倍和1.7~3.2倍。这是由于复合材料表面会形成高密度的网状结构,这种具有较大比表面积和高表面能的特殊纳米结构可以提高复合材料的比热容和热导率。
中图分类号:
于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
Qiang YU, Yuanwei LU, Xiaopan ZHANG, Yuting WU. Effect of nanoparticles on thermal properties of molten salt composite heat storage materials[J]. CIESC Journal, 2019, 70(S1): 217-225.
1 | HerrmannU, KellyB, PriceH. Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy, 2004, 29(5): 883-893. |
2 | PriceH, LupfertE, KearneyD, et al. Advances in parabolic trough solar power technology[J]. Journal of Solar Energy Engineering, 2002, 124(2): 109-125. |
3 | BrownD R, LamarcheJ L, SpannerG E. Chemical energy storage system for SEGS solar thermal power plant[C]//International Solar Energy Conference. Honolulu, 1992: 92. |
4 | MalikD R. Evaluation of composite alumina nanoparticle and nitrate eutectic materials for use in concentrating solar power plants[D]. Texas: Texas A&M University, 2010. |
5 | ChieruzziM, CerritelliG F, MiliozziA, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Research Letters, 2013, 8(1): 448. |
6 | Andreu-CabedoP, MondragonR, HernandezL, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles[J]. Nanoscale Research Letters, 2014, 9(1): 582. |
7 | MingX H, PanC. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2014, 70(3): 174-184. |
8 | ZhangL D, ChenX, WuY T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials & Solar Cells, 2016, 157: 808-813. |
9 | 张璐迪. 纳米SiO2-熔盐复合储热材料的制备与热物性研究[D]. 北京: 北京工业大学, 2016. |
ZhangL D. Experimental study on preparation and thermal properties of composite nano-SiO2 molten salt using in thermal energy storage [D]. Beijing: Beijing University of Technology, 2016. | |
10 | QiaoG, LasfarguesM, AlexiadisA, et al. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering, 2017, 111:1517-1522. |
11 | AktayK S D C, TammeR, Müller-SteinhagenH. Thermal conductivity of high-temperature multicomponent materials with phase change[J]. International Journal of Thermophysics, 2008, 29(2): 678-692. |
12 | BauerT, TammeR, ChristM, et al. PCM-graphite composites for high temperature thermal energy storage[C]// Ecostock. DLR, 2006. |
13 | AcemZ, LopezJ, BarrioE P D. KNO3/NaNO3–graphite materials for thermal energy storage at high temperature(Ⅰ): Elaboration methods and thermal properties[J]. Applied Thermal Engineering, 2010, 30(13): 1580-1585. |
14 | LopezJ, AcemZ, BarrioE P D. KNO3/NaNO3–graphite materials for thermal energy storage at high temperature(Ⅱ): Phase transition properties[J]. Applied Thermal Engineering, 2010, 30(13): 1586-1593. |
15 | XiaoX, ZhangP, LiM. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage[J]. Energy Conversion & Management, 2013, 73(73): 86-94. |
16 | 张焘, 曾亮, 张东. 膨胀石墨、石墨烯改善无机盐相变材料热物性能[J]. 无机盐工业, 2010, 42(5): 24-26. |
ZhangT, ZengL, ZhangD. Improvement of thermal properties of hybrid inorganic salt phase change materials by expanded graphite and grapheme[J]. Inorganic Chemicals Industry, 2010, 42(5): 24-26. | |
17 | TianH, WangW, DingJ, et al. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials[J]. Solar Energy Materials & Solar Cells, 2016, 149: 187-194. |
18 | HuangZ, GaoX, XuT, et al. Thermal property measurement and heat storage analysis of LiNO3/KCI-expanded graphite composite phase change material[J]. Applied Energy, 2014, 115: 265-271. |
19 | TianH, WangW, DingJ, et al. Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites[J]. Applied Energy, 2015, 148: 87-92. |
20 | ZhouD, ZhaoC Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering, 2011, 31(5): 970-977. |
21 | MohamedS A, Al-SulaimanF A, IbrahimN I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable & Sustainable Energy Reviews, 2017, 70: 1072-1089. |
22 | ZhangP, XiaoX, MaZ W. A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510. |
23 | ChieruzziM, CerritelliG F, MiliozziA, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials and Solar Cells, 2017, 167: 60-69. |
24 | SongW L, LuY W, WuY T, et al. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt[J]. Solar Energy Materials & Solar Cells, 2018, 179: 66-71. |
25 | 于强, 鹿院卫. 硝酸盐/纳米SiO2/EG复合蓄热材料的制备与热性能研究[C]// 第四届中国太阳能热发电大会. 常州, 2018. |
YuQ, LuY W. Preparation and thermal properties of nitrate/nano-SiO2/EG composite thermal storage materials[C]// Fourth China Solar Thermal Power Generation Congress. Changzhou, 2018. | |
26 | JoB, BanerjeeD. Enhanced specific heat capacity of molten salt-based nanomaterials: effects of nanoparticle dispersion and solvent material[J]. Acta Materialia, 2014, 75(9): 80-91. |
27 | DuddaB, ShinD. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69(7): 37-42. |
28 | TiznobaikH, ShinD. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat & Mass Transfer, 2013, 57(2): 542-548. |
29 | ShinD, BanerjeeD. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic[J]. International Journal of Heat & Mass Transfer, 2014, 74(5): 210-214. |
30 | ShinD, BanerjeeD. Enhanced thermal properties of SiO2, nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat & Mass Transfer, 2015, 84: 898-902. |
31 | MunyaloM J, ZhangX L. Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: a review[J]. Journal of Molecular Liquids, 2018, 265: 77-87. |
[1] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[2] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[3] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[4] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[5] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[6] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[7] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[8] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[9] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[10] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[11] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
[12] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[13] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[14] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[15] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 287
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 423
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||