化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2083-2091.DOI: 10.11949/j.issn.0438-1157.20181406
赵柏岑1(),丁静1,魏小兰2,刘彬1,陆建峰1,王维龙1()
收稿日期:
2018-11-26
修回日期:
2019-03-01
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
王维龙
作者简介:
<named-content content-type="corresp-name">赵柏岑</named-content>(1995—),男,硕士研究生,<email>zhaobc@mail2.sysu.edu.cn</email>
基金资助:
Baicen ZHAO1(),Jing DING1,Xiaolan WEI2,Bin LIU1,Jianfeng LU1,Weilong WANG1()
Received:
2018-11-26
Revised:
2019-03-01
Online:
2019-06-05
Published:
2019-06-05
Contact:
Weilong WANG
摘要:
采用共形离子溶液模型(conformalionic solution model, CIS) 在二元熔盐体系相图的基础上,对三元熔盐体系LiNO3-NaNO3-KNO3进行了相图计算,得到该三元体系最低共熔点为117.7℃,相应的摩尔分数组成分别为x(LiNO3) = 0.375,x(NaNO3) = 0.075,x(KNO3) = 0.550。按照热力学最低共熔点计算结果,采用熔融法制备了三元硝酸熔盐,通过DSC和TG实验测定其最低共熔点为118.3℃,这与计算得到的结果(117.7℃)基本一致。TG测试结果表明当温度低于587.2℃时,该三元熔盐体系较为稳定,其工作温度范围为118.3~587.2℃,该三元硝酸熔盐适合在太阳能热发电中作为高温传热蓄热材料使用。
中图分类号:
赵柏岑, 丁静, 魏小兰, 刘彬, 陆建峰, 王维龙. LiNO3-NaNO3-KNO3三元熔盐材料的设计及热稳定性研究[J]. 化工学报, 2019, 70(6): 2083-2091.
Baicen ZHAO, Jing DING, Xiaolan WEI, Bin LIU, Jianfeng LU, Weilong WANG. Design and thermal stability study of LiNO3-NaNO3-KNO3 ternary molten salt system[J]. CIESC Journal, 2019, 70(6): 2083-2091.
Component | | | |
---|---|---|---|
LiNO3 | 255 | 24615.15 | 0.281 |
NaNO3 | 305.85 | 15502 | 0.879 |
KNO3 | 334.45 | 9623 | 2.887 |
表1 熔盐物性参数
Table 1 Physical parameters for single salt
Component | | | |
---|---|---|---|
LiNO3 | 255 | 24615.15 | 0.281 |
NaNO3 | 305.85 | 15502 | 0.879 |
KNO3 | 334.45 | 9623 | 2.887 |
Component | 最低共熔点/℃ | 实验相图 | 计算结果 | 相关系数λ | ||
---|---|---|---|---|---|---|
x A/mol | x B/mol | x A/mol | x B/mol | |||
LiNO3-NaNO3 | 195 | 0.54 | 0.46 | 0.509562 | 0.490438 | ?711.962 |
LiNO3-KNO3 | 125 | 0.42 | 0.58 | 0.407864 | 0.592136 | ?8799.22 |
NaNO3-KNO3 | 223 | 0.49 | 0.51 | 0.448873 | 0.551127 | 3593.36 |
表2 二元硝酸熔盐的低共熔点、组成及计算所得组成和相关系数
Table 2 Eutectic temperature, composition in phase diagrams, calculated composition and interaction parameter λ
Component | 最低共熔点/℃ | 实验相图 | 计算结果 | 相关系数λ | ||
---|---|---|---|---|---|---|
x A/mol | x B/mol | x A/mol | x B/mol | |||
LiNO3-NaNO3 | 195 | 0.54 | 0.46 | 0.509562 | 0.490438 | ?711.962 |
LiNO3-KNO3 | 125 | 0.42 | 0.58 | 0.407864 | 0.592136 | ?8799.22 |
NaNO3-KNO3 | 223 | 0.49 | 0.51 | 0.448873 | 0.551127 | 3593.36 |
Component | x A/mol | x B/mol | x C/mol | T f/℃ |
---|---|---|---|---|
LiNO3-NaNO3-KNO3 | 0.375 | 0.075 | 0.550 | 117.7 |
表3 计算相图预测的低共熔点温度和组成
Table 3 Predicted low eutectic melting point temperature and composition
Component | x A/mol | x B/mol | x C/mol | T f/℃ |
---|---|---|---|---|
LiNO3-NaNO3-KNO3 | 0.375 | 0.075 | 0.550 | 117.7 |
Component | x A/mol | x B/mol | x C/mol | T f/℃ |
---|---|---|---|---|
1 | 0.375 | 0.075 | 0.550 | 118.3 |
2 | 0.355 | 0.088 | 0.557 | 125.5 |
3 | 0.399 | 0.091 | 0.510 | 123.6 |
4 | 0.385 | 0.055 | 0.560 | 123.1 |
5 | 0.370 | 0.079 | 0.551 | 121.3 |
6 | 0.386 | 0.082 | 0.532 | 122.7 |
7 | 0.383 | 0.080 | 0.537 | 127.8 |
8 | 0.391 | 0.086 | 0.523 | 126 |
9 | 0.388 | 0.102 | 0.51 | 124.8 |
10 | 0.328 | 0.205 | 0.467 | 124.7 |
11 | 0.375 | 0.182 | 0.443 | 125.6 |
12 | 0.344 | 0.186 | 0.470 | 121.9 |
13 | 0.455 | 0.177 | 0.368 | 123.3 |
14 | 0.397 | 0.251 | 0.388 | 121.1 |
15 | 0.359 | 0.131 | 0.51 | 122.1 |
16 | 0.370 | 0.089 | 0.541 | 121.8 |
17 | 0.475 | 0.059 | 0.466 | 127.9 |
18 | 0.407 | 0.040 | 0.553 | 127.9 |
19 | 0.455 | 0.150 | 0.395 | 122.9 |
20 | 0.220 | 0.191 | 0.589 | 128.9 |
表4 预测相图共晶点实验值
Table 4 Experimental results of predicted tenary eutectic
Component | x A/mol | x B/mol | x C/mol | T f/℃ |
---|---|---|---|---|
1 | 0.375 | 0.075 | 0.550 | 118.3 |
2 | 0.355 | 0.088 | 0.557 | 125.5 |
3 | 0.399 | 0.091 | 0.510 | 123.6 |
4 | 0.385 | 0.055 | 0.560 | 123.1 |
5 | 0.370 | 0.079 | 0.551 | 121.3 |
6 | 0.386 | 0.082 | 0.532 | 122.7 |
7 | 0.383 | 0.080 | 0.537 | 127.8 |
8 | 0.391 | 0.086 | 0.523 | 126 |
9 | 0.388 | 0.102 | 0.51 | 124.8 |
10 | 0.328 | 0.205 | 0.467 | 124.7 |
11 | 0.375 | 0.182 | 0.443 | 125.6 |
12 | 0.344 | 0.186 | 0.470 | 121.9 |
13 | 0.455 | 0.177 | 0.368 | 123.3 |
14 | 0.397 | 0.251 | 0.388 | 121.1 |
15 | 0.359 | 0.131 | 0.51 | 122.1 |
16 | 0.370 | 0.089 | 0.541 | 121.8 |
17 | 0.475 | 0.059 | 0.466 | 127.9 |
18 | 0.407 | 0.040 | 0.553 | 127.9 |
19 | 0.455 | 0.150 | 0.395 | 122.9 |
20 | 0.220 | 0.191 | 0.589 | 128.9 |
Component | x A/mol | x B/mol | x C/mol | T f/℃ | 差值,ΔT f/℃ |
---|---|---|---|---|---|
本文实验值 | 0.375 | 0.075 | 0.550 | 118.3 | 0 |
A [ | 0.388 | 0.102 | 0.510 | 124.17 | 5.87 |
B [ | 0.328 | 0.205 | 0.467 | 116 | -2.3 |
C [ | 0.375 | 0.182 | 0.443 | 120 | 1.7 |
D [ | 0.344 | 0.186 | 0.470 | 120 | 1.7 |
E [ | 0.371 | 0.181 | 0.448 | 120 | 1.7 |
F [ | 0.455 | 0.177 | 0.368 | 120 | 1.7 |
表5 文献实验结果
Table 5 Experimental results of references
Component | x A/mol | x B/mol | x C/mol | T f/℃ | 差值,ΔT f/℃ |
---|---|---|---|---|---|
本文实验值 | 0.375 | 0.075 | 0.550 | 118.3 | 0 |
A [ | 0.388 | 0.102 | 0.510 | 124.17 | 5.87 |
B [ | 0.328 | 0.205 | 0.467 | 116 | -2.3 |
C [ | 0.375 | 0.182 | 0.443 | 120 | 1.7 |
D [ | 0.344 | 0.186 | 0.470 | 120 | 1.7 |
E [ | 0.371 | 0.181 | 0.448 | 120 | 1.7 |
F [ | 0.455 | 0.177 | 0.368 | 120 | 1.7 |
1 | Tian Y , Zhao C Y . A review of solar collectors and thermal energy storage in solar thermal applications[J]. Applied Energy, 2013, 104(4): 538-53. |
2 | Herrmann U , Kelly B , Price H . Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy, 2004, 29(5/6): 883-893. |
3 | Kearney D , Kelly B , Herrmann U , et al . Engineering aspects of a molten salt heat transfer fluid in a trough solar field[J]. Energy, 2004, 29(5/6): 861-870. |
4 | Kearney D , Herrmann U , Nava P , et al . Assessment of a molten salt heat transfer fluid in a parabolic trough solar field[J]. Journal of Solar Energy Engineering, 2003, 125(2): 293-299. |
5 | Reddy R G . Molten salts: thermal energy storage and heat transfer media[J]. Journal of Phase Equilibria and Diffusion, 2011, 32(4): 269-270. |
6 | Bradshaw R W , Meeker D E . High-temperature stability of ternary nitrate molten salts for solar thermal energy systems[J]. Solar Energy Materials, 1990, 21(1):51-60. |
7 | Roget F , Favotto C , Rogez J . Study of the KNO3-LiNO3 and KNO3-NaNO3-LiNO3 eutectics as phase change materials for thermal storage in a low-temperature solar power plant[J]. Solar Energy, 2013, 95: 155-169. |
8 | Raade J W , Padowitz D . Development of molten salt heat transfer fluid with low melting point and high thermal stability[J]. Journal of Solar Energy Engineering, 2011, 133(3): 031013. |
9 | Wang T , Mantha D , Reddy R G . Novel low melting point quaternary eutectic system for solar thermal energy storage[J]. Applied Energy, 2013, 102: 1422-1429. |
10 | Wei X , Song M , Wang W , et al . Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage[J]. Applied Energy, 2015, 156(1): 306-310. |
11 | Gal I J , Pallgric I . Calculation of phase diagrams of binary salt mixtures with a common anion[J]. Journal of the Chemical Society Faraday Transactions, 1982, 78(6): 1993-2003. |
12 | GAL I J, Zsigrai I J , Pallgric I , et al . Calculation of phase equilibria of ternary additive molten salt systems with a common anion [J]. Journal of the Chemical Society Faraday Transactions, 1983, 79(9): 2171-2178. |
13 | Lin P L , Pelton A D , Bale C W . Computation of ternary molten salt phase diagrams[J]. Journal of the American Ceramic Society, 2006, 62(7/8): 414-422. |
14 | 何鸣鸿, 邱竹贤, 包宏 . 用CIS理论估算三元熔盐相图[J]. 东北工学院学报, 1988, 9(1): 57-62 |
He M H , Qiu Z X , Bao H . Calculation of ternary phase diagrams of additive molten salt systems by CIS [J]. Journal of Northeastern University:Natural Science, 1988, 9(1): 57-62. | |
15 | Mcmurdie H F , Hall F P . Phase diagrams for ceramists: supplement No. 1[J]. Journal of the American Ceramic Society, 2010, 32(s1):154-164. |
16 | Chase M W J . NIST-JANAF Thermochemical Tables[M]. Washington: American Chemical Society, 1998. |
17 | Barin I . Thermochemical Data of Pure Substances[M]. New York: Wiley, 1995. |
18 | Janz G J . Molten Salts Handbook[M]. New York: Academic Press, 1967. |
19 | Peng Q , Ding J , Wei X , et al . The preparation and properties of multi-component molten salts[J]. Applied Energy, 2010, 87(9): 2812-2817. |
20 | Peng Q , Yang X , Ding J , et al . Design of new molten salt thermal energy storage material for solar thermal power plant [J]. Applied Energy, 2013, 112(16): 682-689. |
21 | 王军涛, 王文磊, 来梦泽, 等 . 三元体系LiNO3-NaNO3-KNO3相图预测及其热性能研究[J]. 功能材料, 2014, 45(15): 15036-15040. |
Wang J T , Wang W L , Lai M Z , et al . Phase diagram prediction of the LiNO3-NaNO3-KNO3 ternary system and its thermodynamic performance[J]. Functional Materials, 2014, 45(15): 15036-15040. | |
22 | Mantha D , Wang T , Reddy R G . Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3 ternary system[J]. Journal of Phase Equilibria and Diffusion, 2012, 33(2):110-114. |
23 | Carveth H R . Study of three-component system[J]. Journal of Physical Chemistry, 1898, 2(4): 209-228. |
24 | 安学会 . LiNO3-NaNO3-KNO3体系相图计算[C]//第十七届全国相图学术会议相图与材料设计国际研讨会会议论文集. 桂林: 中国物理学会相图专业委员会, 2015. |
An X H . Calculating phase diagrams of LiNO3-NaNO3-KNO3 system[C]//Proceedings of the 17th National Conference on Phase Diagrams and Material Design. Guilin: Professional Committee of Phase Diagrams of the Chinese Physical Society, 2015. | |
25 | Bergman A K . Systems CO(NH2)2-LiNO3; K, LiNa|NO3; and Na, K/NH4|NO3 [J]. Russian of Journal Inorgnic Chemistry, 1964, 9(6): 1423-1426. |
26 | 廖敏, 丁静, 魏小兰, 等 . 高温碳酸熔盐的制备及传热蓄热性质[J]. 无机盐工业, 2008, (10): 15-17. |
Liao M , Ding J , Wei X L , et al . Preparation and heat transfer and thermal storage property of high-temperature carbonate molten salt[J]. Inorganic Salt Industry, 2008, (10): 15-17. | |
27 | 宋明, 魏小兰, 彭强, 等 . 新型三元氯化物熔盐材料的设计及热稳定性研究[J]. 工程热物理学报, 2015, 36(2): 393-396. |
Song M , Wei X L , Peng Q , et al . Thermal stability of a new designed ternary chloride molten salt material[J]. Journal of Engineering Thermophysics, 2015, 36(2): 393-396. | |
28 | Janz G J , Allen C B , Bansal N P , et al . Physical properties data compilations relevant to enengy storage. molten salts: data on single and multi-component salt; system[R]. Washington: US Government Printing Office, 1981. |
29 | Freeman E S . The kinetics of the thermal decomposition of sodium nitrate and of the reaction between sodium nitrite and oxygen[J]. J. Phys. Chem., 1956, 60: 1487-1493. |
30 | Stern K . High temperature properties and decomposition of inorganic salts: nitrates and nitrites[J]. J.Phys. Chem., 1972, 1(3): 762-764. |
31 | 常虎成,陈岩 . 熔盐载体过热分析[J]. 世界有色金属, 2000, (8): 21-23. |
Chang H C , Chen Y . Superheat analysis of molten salt carrier [J]. World Nonferrous Metals, 2000, (8): 21-23. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[11] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[12] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[13] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[14] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[15] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||